Common Subsequence
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1,
i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find
the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0题目大意:给出两个字符串,求最长公共子串LCS。
解题思路:非常经典的dp问题。定义dp[i][j]为串x的前i - 1位与串y的前j - 1位的最长公共子串,则对于x[i]和y[j],若x[i] == y[j],则dp[i + 1][j + 1] = dp[i][j] + 1;若x[i] != y[j],则dp[i + 1][j + 1] = max(dp[i + 1][j],dp[i][j + 1])。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 300;
char x[maxn],y[maxn];
int dp[maxn][maxn];
int main()
{
int i,j,k;
while(scanf("%s %s",x,y) != EOF){
memset(dp,0,sizeof(0));
int lx = strlen(x);
int ly = strlen(y);
for(i = 0;i < lx;i++){
for(j = 0;j < ly;j++){
if(x[i] == y[j])
dp[i + 1][j + 1] = dp[i][j] + 1;
else
dp[i + 1][j + 1] = max(dp[i + 1][j],dp[i][j + 1]);
}
}
printf("%d\n",dp[lx][ly]);
}
return 0;
}