HDU 5884 Sort 2分 K叉哈夫曼树

本文介绍了一道关于数据结构与算法的问题,通过使用哈夫曼树思想和二分查找法来确定将多个已排序序列合并为一个序列所需的最小固定合并数量,同时确保总花费不超过给定阈值。

题目

Sort

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2866    Accepted Submission(s): 719


Problem Description
Recently, Bob has just learnt a naive sorting algorithm: merge sort. Now, Bob receives a task from Alice.
Alice will give Bob N sorted sequences, and the i-th sequence includes ai elements. Bob need to merge all of these sequences. He can write a program, which can merge no more than k sequences in one time. The cost of a merging operation is the sum of the length of these sequences. Unfortunately, Alice allows this program to use no more than T cost. So Bob wants to know the smallest k to make the program complete in time.
 

Input
The first line of input contains an integer t0, the number of test cases. t0 test cases follow.
For each test case, the first line consists two integers N (2N100000) and T (Ni=1ai<T<231).
In the next line there are N integers a1,a2,a3,...,aN(i,0ai1000).
 

Output
For each test cases, output the smallest k.
 

Sample Input
1 5 25 1 2 3 4 5
 

Sample Output
3

题目大意


  给你一组数(无序的),ai代表有ai个元素,要求我们把这些数合并成一个数,每次合并的数量是固定的,每次合并的花费你合并的数的和,例如你合并ai,aj,就就要花费SUM(ai+aj),但是你总的花费不能超过T,Bob想知道每次合并的数量最少是几?

 

解题思路


 刚开始直接从1开始找,发现傻了点,这样的题,最适合二分,每次二分K,然后比较一下K叉哈夫曼树和T就可以啦,哈夫曼树不会的建议好好学习一下数据结构。


#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL long long
const int maxn =100000+10;
LL a[maxn];//存数的数组
LL b[maxn];//存加和的数组
int N;
int Hafuman(int k)  //返回总代价,O(2*n)
{
	int ai, bi, blen;
	blen = 0;
	ai = bi = 0;
	LL cost = 0;
	bool first = true;
	while (N - ai + blen - bi > 1)
	{
		int num = 0;
		if (first)
		{
			if ((N - k) % (k - 1) == 0)
				num = k;
			else
				num = (N - k) % (k - 1) + 1;
			first = false;
		}
		else
			num = k;
		LL sum = 0;
		while (num--)
		{
			if (ai == N)
			{
				sum += b[bi];
				bi++;
			}
			else if (bi == blen)
			{
				sum += a[ai];
				ai++;
			}
			else if (a[ai] < b[bi])
			{
				sum += a[ai];
				ai++;
			}
			else
			{
				sum += b[bi];
				bi++;
			}
		}
		cost += sum;
		b[blen++] = sum;
	}
	return cost;
}
int main()
{
    int t;
    LL T;
    scanf("%d",&t);
    while(t--)
    {
      scanf("%d%lld",&N,&T);
      for(int i=0;i<N;i++)
        scanf("%lld",a+i);

      sort(a,a+N);

      int l=2,r=N;
      while(l<r)
      {
          int mid=(l+r)>>1;
          if(Hafuman(mid)<=T)
          {
              r=mid;
          }
          else
          {
              l=mid+1;
          }
      }
      printf("%d\n",r);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值