超越GPT-4o-mini限制,北大发布「国产o1」大型模型,引入{多阶段自主推理}技术,助力小型模型释放“大能量”!

OpenAI的闭源多模态模型o1再次霸榜好久了,这使得开源界与闭源界之间的差距进一步拉大。**早期的开源视觉语言模型(VLM)主要采用直接预测方法,在回答问题时立即生成简短的答案。这种直接反应范式的主要局限性在于它缺乏结构化的推理过程,这使得它对需要逻辑推理的任务效率较低。大量的研究结果表明,**这些问题的一个重要原因是现有VLM中推理过程的系统性和结构化不足。具体来说,通过引用系统,该模型不生成直接的推理链,而是参与多阶段推理。另一方面,结构化是指模型能够清楚地识别它所处的推理阶段,并理解每个阶段要解决的主要任务。作者介绍了LLaVA-o1,这是一种用于进行自主多阶段推理的新型VLM。与思维链提示不同,LLaVA-o1能够独立地参与总结、视觉解释、逻辑推理和结论生成的连续阶段。它不仅在各种多模态推理基准上比其基础模型高出8.9%,而且还超过了更大甚至闭源模型的性能,如Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-VisionInstru ct。

代码链接-https://github.com/PKU-YuanGroup/LLaVA-o1

论文链接-https://arxiv.org/pdf/2411.10440

01-LLaVA-o1背景简介

以OpenAI o1为代表的大型语言模型展示了强大的推理能力,这充分的验证了语言模型推理时间缩放的有效性。然而,视觉对于使模型能够充分理解世界并扩展其认知能力同等重要。因此,开发一个融合语言和视觉的多模态模型,同时促进其有效、系统和深入的推理,具有重要意义。

早期的开源视觉语言模型(VLM)主要采用直接预测方法,在回答问题时立即生成简短的答案。这种直接反应范式的主要局限性在于它缺乏结构化的推理过程,这使得它对需要逻辑推理的任务效率较低。近期的研究表明,结合思维链(CoT)推理可以鼓励模型逐步推理,显著提高其问答能力。然而,即使使用CoT推理,大多数VLM在推理过程中也经常产生错误或幻觉输出。

大量的研究结果表明,这些问题的一个重要原因是现有VLM中推理过程的系统性和结构化不足。具体来说,通过引用系统,该模型不生成直接的推理链,而是参与多阶段推理。另一方面,结构化是指模型能够清楚地识别它所处的推理阶段,并理解每个阶段要解决的主要任务。作者观察到,VLM经常在没有充分组织问题和可用信息的情况下发起响应。此外,它们经常偏离对结论的逻辑推理,而不是过早地提出结论并随后试图证明其合理性。鉴于语言模型会逐一生成响应,一旦引入错误的结论,模型通常会沿着有缺陷的推理路径继续。

02-LLaVA-o1算法简介

在这项工作中,作者介绍了LLaVA-o1,这是一种用于进行自主多阶段推理的新型VLM。与思维链提示不同,LLaVA-o1能够独立地参与总结、视觉解释、逻辑推理和结论生成的连续阶段。这种结构化方法使得LLaVA-o1能够在推理密集型任务的精度方面得到显著地提高。

为了实现这一点,作者收集了LLaVA-o1-100k数据集,整合了很多来自各种可视化问答源的样本,并提供了结构化的推理注释。此外,作者提出了一种推理时间级波束搜索方法,该方法能够实现有效的推理时间尺度。

值得注意的是,LLaVA-o1仅使用了10万个训练样本和一种简单而有效的推理时间缩放方法,它不仅在各种多模态推理基准上比其基础模型高出8.9%,而且还超过了更大甚至闭源模型的性能,如Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-VisionInstruct。

03-LLaVA-o1算法整体流程

上图展示了该算法的推理流程。利用Best-of-N搜索方法来生成N个完整响应,并从中选择一个最佳响应;句子级的束搜索为每个句子生成多个候选选项,并选择最佳选项。相比之下,作者提出的阶段级波束搜索能够为每个推理阶段(例如,摘要、标题、推理和结论)生成候选者,并在每个阶段选择最佳选项。Best-of-N搜索在粗略级别上运行,而句子级别的Beam搜索过于精细,该方法实现了最佳平衡并获得了最佳性能。具体的步骤如下所述:

  • 步骤1–在第一阶段的解决方案种采样N个样本。

  • 步骤2–随机抽取2个响应,让模型确定哪个更好,保持更好的响应。

  • 步骤3–重复N-1次,保持最佳反应。

  • 步骤4–对下一阶段的N个响应进行采样,然后重复步骤2-4,直到所有阶段都处理完毕。

04-LLaVA-o1算法实现细节

04.01-生成LLaVA-o1-100k的工作流

大多数现有的VQA数据集缺乏训练LLaVA-o1模型所需的详细推理过程。因此,作者收集了一个新的数据集,该数据集中整合了几个广泛使用的VQA数据集的样本,总共有99k个图像QA对(每对可能包括一轮或多轮提问)。

如上图所示,由于目前不存在可以直接产生系统、结构化推理的多模态模型,作者使用GPT-4o生成详细的推理过程,包括总结、标题、推理和结论,并将其编译成LLaVA-o1-100k数据集,作者计划后期发布该数据集,供大家一起使用。

04.02-阶段级的束搜索详解

作者在上图中提供了一个示例。当不应用推理时间缩放时,尽管模型生成了正确的推理步骤,但在推理过程中无法得出具体的答案。这会导致模型在结论阶段进行猜测,从而导致错误的结果。相比之下,通过推理时间缩放,模型保留了导致最终结果的推理步骤,确保了答案的正确性。

05-LLaVA-o1算法性能评估

05.01-主观效果性能评估

上图展示了基础的LIama-3.2-11B模型和LLaVA-o1在相同的输入问题上面的比较结果。通过观察与分析,我们可以发现:基础模型Llama-3.2-11B-VisionInstruct在推理过程中表现出明显的缺陷,在整个推理过程中出现了几个错误。相比之下,LLaVA-o1首先概述问题,解释图像中的相关信息,进行逐步推理过程,最终得出一个有充分支持的结论。

05.02-客观指标性能评估

上图展示了LLaVA-o1和其它模型在六个多模态推理基准上的性能表现。尽管LLaVA-o1是从Llama-3.2-11B-VisionInstruct模型(平均得分最低)微调而来的,但它的表现优于许多较大的开源模型,甚至超过一些闭源模型。

上表展示了不同的模型在多个评估基准上面的实验结果。这里,LLaVA-o1(带直接训练)是指直接在原始VQA数据集的问答对上训练的模型,而LLaVA-o1(不带结构化标签)表示在去除结构化标签的LLaVA-o-100k数据集上训练的模型。LLaVA-o1是指在完整的LLaVA-o1-100k数据集上训练的模型,包括结构化标签。

通过观察与分析,我们可以发现:LLaVA-o1在多个基准上面都超越了其它的基线算法,这充分的证实了其有效性。

如上表所示,作者在六个需要高级推理能力的基准测试中比较了LLaVA-o1与其它几个最先进的开源和闭源视觉语言模型(VLM):MMStar-R、MMBench-R、MMVet-R、MathVista、AI2D和HallusionBench。

通过观察与分析,我们可以发现:LLaVA-o1始终优于许多类似甚至更大尺寸的开源模型,如InternVL2-8B、Ovis1.5-Gemma29B、MiniCPM-V2.6-8B、Llama-3.2-90B-VisionInstruct和VILA-1.5-40B。值得注意的是,LLaVA-o1甚至超越了GPT-4o-mini和Gemini-1.5-pro等某些闭源模型,突显了该结构化推理方法的有效性。这种比较验证了该方法的优势,特别是在严重依赖推理技能的基准测试中,并强调了LLaVA-o1是推理密集型VLM任务领域的竞争模型。

06-LLaVA-o1算法效果展示

图6.1-LLaVA-o1算法效果展示1

图6.2-LLaVA-o1算法效果展示2

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

优快云粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

优快云粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值