bzoj 1798 [Ahoi2009]Seq 维护序列seq

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。


题解

线段树练手题

使用两种标记。加法和询问不变,乘法每次要把加法标记和区间和都乘上相应的数,下传标记时先下传乘法再下传加法。

参考了@AaronPolaris的代码

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

#define MAX 400000
#define rep(ii, aa, bb) for (int ii = aa; ii <= bb; ii++)
#define LL long long
#define ls cur << 1
#define rs cur << 1 | 1
#define getMid int mid = L + R >> 1

LL sum[MAX], mul[MAX], add[MAX], mod;

void up_date(int cur) {
	sum[cur] = (sum[ls] + sum[rs]) % mod;
}

void build(int L, int R, int x, int y, int cur) {
	mul[cur] = 1;
	add[cur] = 0;
	sum[cur] += y;
	if (L == R) return;
	getMid;
	if (x > mid) build(mid + 1, R, x, y, rs);
	else build(L, mid, x, y, ls);
	up_date(cur);
}

void push_down(int cur, int l, int r, int mid) {
	if (mul[cur] == 1 && add[cur] == 0) return;
	mul[ls] = mul[ls] * mul[cur] % mod;
	add[ls] = (add[ls] * mul[cur] % mod + add[cur]) % mod;
	sum[ls] = (sum[ls] * mul[cur] % mod + add[cur] * (LL)(mid - l + 1) % mod) % mod;
	mul[rs] = mul[rs] * mul[cur] % mod;
	add[rs] = (add[rs] * mul[cur] % mod + add[cur]) % mod;
	sum[rs] = (sum[rs] * mul[cur] % mod + add[cur] * (LL)(r - mid) % mod) % mod;
	mul[cur] = 1;
	add[cur] = 0;
	return;
}

void change_mul(int L, int R, int l, int r, int x, int cur) {
	if (L >= l && R <= r) {
		mul[cur] = mul[cur] * (LL)x % mod;
		add[cur] = add[cur] * (LL)x % mod;
		sum[cur] = sum[cur] * (LL)x % mod;
		return;
	}
	getMid;
	push_down(cur, L, R, mid);
	if (l <= mid) change_mul(L, mid, l, r, x, ls);
	if (r >  mid) change_mul(mid + 1, R, l, r, x, rs);
	up_date(cur);
}

void change_add(int L, int R, int l, int r, int x, int cur) {
	if (L >= l && R <= r) {
		add[cur] = (add[cur] + (LL)x) % mod;
		sum[cur] = (sum[cur] + (LL)(R - L + 1)*x%mod) % mod;
		return;
	}
	getMid;
	push_down(cur, L, R, mid);
	if (l <= mid) change_add(L, mid, l, r, x, ls);
	if (r >  mid) change_add(mid + 1, R, l, r, x, rs);
	up_date(cur);
}

LL query(int L, int R, int l, int r, int cur) {
	if (L >= l && R <= r) return sum[cur];
	getMid;
	LL ans = 0;
	push_down(cur, L, R, mid);
	if (l <= mid) ans = (ans + query(L, mid, l, r, ls)) % mod;
	if (r > mid) ans = (ans + query(mid + 1, R, l, r, rs)) % mod;
	up_date(cur);
	return ans;
}

int main() {
	int n, m, a, b, c, i, x;
	scanf("%d%lld", &n, &mod);
	rep(i, 1, n) scanf("%d", &a), build(1, n, i, a % mod, 1);
	scanf("%d", &m);
	while(m--) {
		scanf("%d", &x);
		if (x == 1) scanf("%d%d%d", &a, &b, &c), change_mul(1, n, a, b, c % mod, 1);
		if (x == 2) scanf("%d%d%d", &a, &b, &c), change_add(1, n, a, b, c % mod, 1);
		if (x == 3) scanf("%d%d", &a, &b), printf("%lld\n", query(1, n, a, b, 1));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值