博弈论初步

博客:http://blog.youkuaiyun.com/u013509299/article/details/37954679

巴什博奕(Bash Game):

三个定理:

定理:

     一、 所有终结点都是必败点P(上游戏中,轮到谁拿牌,还剩0张牌的时候,此人就输了,因为无牌可取);

    二、所有一步能走到必败点P的就是N点;

    三、通过一步操作只能到N点的就是P点


1/只有一堆n个物品,两个人轮流从这堆物品中取物,规
定每次至少取一个,最多取m个。最后取光者得胜。

定每次至少取一个,最多取m个。最后取光者得胜。
显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)*r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
得到先手必败状态 n = (m+1)*k   k = 1,2,3......
当轮到谁时,硬币剩下k*(m+1)枚,谁就不能拿走最后一枚
当轮到谁时,硬币剩下k*(m+1)+s(0<s<=M)时,谁就能拿走最后一枚(拿走S枚使对方剩下k*(m+1)枚,每次对方拿a枚,就拿走m+1-a枚)

2 一个N*M的棋盘,右下方有一个棋子,两人轮流走,可以走到上下左右相邻的未走过的格子,不能走则输,谁胜?

证明:
棋盘格子为奇数则后手胜(1*1 后手直接胜)
棋盘格子为偶数则先手胜(1*2 先手走一步就胜)

 ------------------------------------

这是棋盘对弈的问题,可使用配对解法

N*M定义为N行M列
若棋盘格子为奇数,则N和M均为奇数.设为N*M=2k+1
右下方的棋子已占一个格,还剩下2k个格子.其中最下面一行有M-1个格子,为偶数,剩下N-1行,为偶数
因此,可以把剩下的2k个格子两两配对分成k个1×2的小矩形
这时,先手总是领先进入某一个1×2小矩形的第一个格,后手总可以随之进入这个小矩形的第二个格.最后必然先手先无法移动这个棋子,先手输.后手必取胜
若棋盘格子为偶数,设为N*M=2k
将这2k个格子两两配对分成k个1×2的小矩形
右下方的棋子必在某个1×2的小矩形的一个格子中.先手将棋子走入这个1×2的小矩形的另一个格子中.这时还有k-1个1×2的小矩形,每个小矩形中都有两个小方格.这时该后手走,后手总是领先进入剩下的某个1×2小矩形的第一个格,先手就可以随之进入这个小矩形的第二个格.最后必然后手先无法移动这个棋子,后手输.先手必取胜
所以
棋盘格子为奇数则后手胜
棋盘格子为偶数则先手胜
=================
注:将棋盘格子两两配对成为若干个1×2的小矩形是解决本题的关键!


斐波那契博弈
大致上是这样的:
有一堆个数为 n 的石子,游戏双方轮流取石子,满足:
1. 先手不能在第一次把所有的石子取完;
2. 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。
约定取走最后一个石子的人为赢家,求必败态。
 
分析:     
 n = 2时输出second;    
 n = 3时也是输出second;
 n = 4时,第一个人想获胜就必须先拿1个,这时剩余的石子数为3,此时无论第二个人如何取,第一个人都能赢,输出first;
 n = 5时,first不可能获胜,因为他取2时,second直接取掉剩下的3个就会获胜,当他取1时,这样就变成了n为4的情形,所以输出的是second;  
 n = 6时,first只要去掉1个,就可以让局势变成n为5的情形,所以输出的是first;     
 n = 7时,first取掉2个,局势变成n为5的情形,故first赢,所以输出的是first;    
 n = 8时,当first取1的时候,局势变为7的情形,第二个人可赢,first取2的时候,局势变成n为6得到情形,也是第二个人赢,取3的时候,second直接取掉剩下的5个,所以n = 8时,输出的是second;   
 …………     
 从上面的分析可以看出,n为2、3、5、8时,这些都是输出second,即必败点,仔细的人会发现这些满足斐波那契数的规律,可以推断13也是一个必败点。     
 借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。n=12时,只要谁能使石子剩下8且此次取子没超过3就能获胜。因此可以把12看成8+4,把8看成一个站,等价与对4进行"气喘操作"。又如13,13=8+5,5本来就是必败态,得出13也是必败态。也就是说,只要是斐波那契数,都是必败点。
所以我们可以利用斐波那契数的公式:fib[i] = fib[i-1] + fib[i-2],只要n是斐波那契数就输出second。


威佐夫博奕

定义:有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

思考:

把两堆石子的集合写为(a,b)不失一般性令我们只考虑a<=b的情况;

我们依次考虑(0,0)-(0,*)……(n,n)-(n,*)的情况。把所有状态看成一个二维数组,我们只需考虑上三角的情况;

(0,0)必败点,故(0,*)为必胜点;(1,1)一步可以取完,故也为必胜点;

(1,2)无论怎样取都只能到达必胜点,所以(1,2)为必败点;

(1,*)(2,*)可一步到达(1,2),故其都为必胜点;

此时我们发现一些规律,只有一些特殊的点是必败点,其余大多数情况为必胜点,再次我们不妨称必败点为“奇异局势”,这个定义我们在以后的学习中还可用到;

当(0,*)(1,*)(2,*)都考虑完后,开始考虑(3,*);(3,3)显然可一次取完为必胜点,(3,4)可以减(2,2)到达(1,2),所以也为必胜点;这里我们可以看到一个特点,如果a,b之差等于上述所提到“奇异局势”两堆石子之差时,则(a,b)-(m,m)是可以到达上述情况的,所以凡是后面要找到的点a,b,之差不能等于前面所找到的奇异局势;这时我们发现(3,5)为奇异局势;同理,(3,*)和(5,*)都为必胜点了,和上次推导一样(4,4)(4,5)(4,6)都为必胜点(4,7)为我们要找的奇异局势;(4,*)(7,*)必胜;(6,*)这一行还会有一个奇异局势,我们找到它是(6,10),相差为4;

此时,我们一经发现了一个规律,第i个奇异局势a,b之差为i,如果字典顺序寻找,则(a,b)中的a,为之前奇异局势中未出现的最小的自然数;写到这,你或许可以编程解决一些这样的问题了吧,但这貌似还是有点麻烦,没关系,数学家已经给出了我们a的通项公式(如要了解推导过程可自行查阅资料,这里不作为重点讨论),即ai=[i*(1+5)/2](方括表示下取整),bi=ai+i,。

ak = [ k * (1 + √5 ) / 2 ] , bk = ak + k    k = 0,1,2,3........

 在求ak中还涉及一个取整符号,要判断是否是奇异局势,如果a = floor( ( b - a )*(1 + √5 ) / 2),那么是奇异局势。

尼姆博奕
有三堆各若干个物品,两个人轮流从某一堆取任意多的
物品,规定每次至少取一个,多者不限,最后取光者得胜。

    这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是
(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情
形。

    计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结
果:

1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)

    对于奇异局势(0,n,n)也一样,结果也是0。

    任何奇异局势(a,b,c)都有a(+)b(+)c =0。

如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)
b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

    例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达
到奇异局势(14,21,27)。

    例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品
就形成了奇异局势(55,81,102)。

    例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,4
5,48)。

    例4。我们来实际进行一盘比赛看看:
        甲:(7,8,9)->(1,8,9)奇异局势
        乙:(1,8,9)->(1,8,4)
        甲:(1,8,4)->(1,5,4)奇异局势
        乙:(1,5,4)->(1,4,4)
        甲:(1,4,4)->(0,4,4)奇异局势
        乙:(0,4,4)->(0,4,2)
        甲:(0.4,2)->(0,2,2)奇异局势
        乙:(0,2,2)->(0,2,1)
        甲:(0,2,1)->(0,1,1)奇异局势
        乙:(0,1,1)->(0,1,0)
        甲:(0,1,0)->(0,0,0)奇异局势
        甲胜。
SG函数:

https://www.cnblogs.com/ECJTUACM-873284962/p/6921829.html
必胜点和必败点的概念
       P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
必胜点和必败点的性质
        1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
        2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
        3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以 hdu 1847 Good Luck in CET-4 Everybody!为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
      n    :   0    1    2    3    4   5    6 ...
position:  P    N   N    P   N   N   P ...
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
现在给你一个稍微复杂一点点的: hdu 2147 kiki's game

        现在我们就来介绍今天的主角吧。组合游戏的和通常是很复杂的,但是有一种新工具,可以使组合问题变得简单————SG函数和SG定理。

Sprague-Grundy定理(SG定理):

        游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。对博弈不是很清楚的请参照http://www.cnblogs.com/ECJTUACM-873284962/p/6398385.html进行进一步理解。

SG函数:

        首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

        对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。

【实例】取石子问题

有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

SG[0]=0,f[]={1,3,4},

x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;

x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;

x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;

x=4 时,可以取走4-  f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;

x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;

以此类推.....

   x        0  1  2  3  4  5  6  7  8....

SG[x]    0  1  0  1  2  3  2  0  1....

由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:

1、使用 数组f 将 可改变当前状态 的方式记录下来。

2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。

3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。

4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。
//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
void  getSG(int n){
    int i,j;
    memset(SG,0,sizeof(SG));
    //因为SG[0]始终等于0,所以i从1开始
    for(i = 1; i <= n; i++){
        //每一次都要将上一状态 的 后继集合 重置
        memset(S,0,sizeof(S));
        for(j = 0; f[j] <= i && j <= N; j++)
            S[SG[i-f[j]]] = 1;  //将后继状态的SG函数值进行标记
        for(j = 0;; j++) if(!S[j]){   //查询当前后继状态SG值中最小的非零值
            SG[i] = j;
            break;
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值