Leetcode: Bulb Switcher

本文深入探讨了灯泡开关问题的优化算法,并通过数学解析揭示了其核心规律。从时间复杂度O(n^2)到O(n),算法效率显著提升。通过分析每个灯泡的开闭状态变化,我们发现只有平方数的灯泡最终保持开启状态,其余关闭。此结论基于灯泡被多次开关操作后的状态变化模式。文章提供了两种解决方案:一种基于直接计算平方数的简单方法,另一种则通过数学性质进行深入剖析,帮助理解问题的本质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Question

There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every second bulb. On the third round, you toggle every third bulb (turning on if it’s off or turning off if it’s on). For the nth round, you only toggle the last bulb. Find how many bulbs are on after n rounds.

Example:

Given n = 3.

At first, the three bulbs are [off, off, off].
After first round, the three bulbs are [on, on, on].
After second round, the three bulbs are [on, off, on].
After third round, the three bulbs are [on, off, off].

So you should return 1, because there is only one bulb is on.
Hide Tags Math Brainteaser


My solution

time complexity: O(n^2)

For nth bulb, check how many factors does n have?

class Solution(object):
    def bulbSwitch(self, n):
        """
        :type n: int
        :rtype: int
        """

        if n<=3:
            return n>=1

        res = 1
        for bulb_index in range(4,n+1):
            res = res+1 if self.helper(bulb_index)%2==0 else res    

        return res

    def helper(self,i):
        count = 0
        for ind in range(2,i+1):
            if i%ind==0:
                count += 1

        return count       

Error:
Time exceeds for input 9999


Other’s Solution

time complexity: O(n)

3=1×3,3×1
4=1×4,2×2,4×1
5=1×5,5×1
6=1×6,2×3,3×2,6×1

the initial state of each bulb is off, if the number of factors (including 1) of n is even, bulb will be off eventually, otherwise it will be on. Actually, only when n is square number, the num of factors is odd.

class Solution(object):
    def bulbSwitch(self, n):
        """
        :type n: int
        :rtype: int
        """

        return int(math.sqrt(n))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值