topcoder SRM 500 div2 level3

Problem Statement

 NOTE: This problem statement contains superscripts that may not display properly if viewed outside of the applet.

You are given two geometric progressions S1 = (b1*q1i, 0 <= i <= n1-1) and S2 = (b2*q2i, 0 <= i <= n2-1). Return the number of distinct integers that belong to at least one of these progressions.

Definition

 
Class:GeometricProgressions
Method:count
Parameters:int, int, int, int, int, int
Returns:int
Method signature:int count(int b1, int q1, int n1, int b2, int q2, int n2)
(be sure your method is public)
 
 

Constraints

-b1 and b2 will each be between 0 and 500,000,000, inclusive.
-q1 and q2 will each be between 0 and 500,000,000, inclusive.
-n1 and n2 will each be between 1 and 100,500, inclusive.

Examples

0) 
 
3
2
5
6
2
5
Returns: 6
The progressions in this case are (3, 6, 12, 24, 48) and (6, 12, 24, 48, 96). There are 6 integers that belong to at least one of them: 3, 6, 12, 24, 48 and 96.
1) 
 
3
2
5
2
3
5
Returns: 9
This time the progressions are (3, 6, 12, 24, 48) and (2, 6, 18, 54, 162). Each of them contains 5 elements, but integer 6 belongs to both progressions, so the answer is 5 + 5 - 1 = 9.
2) 
 
1
1
1
0
0
1
Returns: 2
The progressions are (1) and (0).
3) 
 
3
4
100500
48
1024
1000
Returns: 100500
Each element of the second progression belongs to the first progression as well.

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.     


【题解】

分解质因数后判断究竟是否相同。

只需以为枚举。

【代码】

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cstring>

using namespace std;

int a[100][3],b[100][3],t[100][3];
class GeometricProgressions
{
public:
	int count(int, int, int, int, int, int);
};

void prime(int a[][3],int &tot,int x,int y)
{
    tot=0;
    int i;
    for (i=2;i*i<=max(x,y);i++)
    {
        if (x<=1 && y<=1) return;
        if (x && x%i==0)
        {
            a[++tot][0]=i;
            while (x%i==0)
            {
                x/=i;
                a[tot][1]++;
            }
        }
        if (y && y%i==0)
        {
            if (a[tot][0]!=i) a[++tot][0]=i;
            while (y%i==0)
            {
                y/=i;
                a[tot][2]++;
            }
        }
    }
    if (x<y)
    {
        if (x!=1)
            a[++tot][0]=x,a[tot][1]=1;
        if (y!=1)
        {
            if (a[tot][0]!=y) a[++tot][0]=y;
            a[tot][2]=1;
        }
    }
    else {

    if (y!=1)
        a[++tot][0]=y,a[tot][2]=1;
    if (x!=1)
    {
        if (a[tot][0]!=x) a[++tot][0]=x;
        a[tot][1]=1;
    }

}
}

int GeometricProgressions::count(int b1, int q1, int n1, int b2, int q2, int n2)
{
    int i,j,t1,t2,ans,tt;
    bool ff;
    if (b2==0 || q2<=1)
    {
        swap(b1,b2);swap(q1,q2);swap(n1,n2);
    }
    if (b1==0 || q1<=1)
    {
        set<long long> v;
        v.insert(b1);
        if (n1>0) v.insert(b1*q1);
        long long cur=q2;
        for (i=0;i<n2;i++)
        {
            v.insert(b2*cur);
            cur*=q2;
            if (cur>500000000)
                return v.size()+n2-i-1;
        }
        return v.size();
    }
    prime(a,t1,q1,b1);
    prime(b,t2,q2,b2);
    ans=n1+n2;
    if (t1!=t2) return ans;
    for (i=1;i<=t1;i++)
        if (a[i][0]!=b[i][0]) return ans;
    if (b[1][1]==0)
    {
        swap(n1,n2);
        memcpy(t,a,sizeof(a));
        memcpy(a,b,sizeof(b));
        memcpy(b,t,sizeof(t));
    }
    for (i=0;i<n1;i++)
    {
        tt=a[1][1]*i+a[1][2]-b[1][2];
        if (tt%b[1][1]!=0) continue;
        if (tt<0) continue;
        tt/=b[1][1];
        if (tt>=n2) continue;
        ff=true;
        for (j=2;j<=t1;j++)
            if (a[j][1]*i+a[j][2]!=b[j][1]*tt+b[j][2])
            {
                ff=false;
                break;
            }
        if (ff) ans--;
    }
    return ans;
}
int main()
{
    GeometricProgressions a;
    cout << a.count(3,4,100500,48,1024,1000);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值