a/b=i, a%b=i -> a=i*(b+1),(对于一个b可以配出几个i就可以产生几个贡献)可以知道对于给出的x,y 取任意1<=b<=y,一个b产生的贡献为min(x/(b+1),b-1)
当x>=(b+1)(b-1)时对于此时的b的贡献全取b-1
当x<(b+1)(b-1)时按x/(b+1)的贡献,此时用整除分块求解
另注意下范围,细节见代码
Code:
#include<iostream>
#include<cmath>
#define FAST ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
typedef long long ll;
int main()
{
FAST;
int t;cin >> t;
while (t--)
{
ll a, b;cin >> a >> b;
ll ans = 0;
for (ll l = max(2.0,ceil(sqrt((double)a-1.0)))+1, r;l <= min(a,b+1);l = r + 1)
{
r = a / (a / (l));
if (r >= min(a, b+1))
{
r = min(a, b+1);
ans += (r - l + 1) * (a / l);
break;
}
ans += (r - l +1) * (a / (l));
}
ll k = min((double)b-1,max(2.0, ceil(sqrt((double)a - 1.0)))-1-1);
ans += (1 + k) * k / 2;
cout << ans << endl;
}
}

这篇博客探讨了一种算法,用于计算在给定条件下的最大贡献值。通过循环遍历变量b的值,根据公式a/b=i和a%b=i,确定每个b的贡献,并使用分块方法解决不等式。博主提供了C++代码实现,重点在于处理不同b值时的边界情况和贡献计算。
2993

被折叠的 条评论
为什么被折叠?



