Python文本聚类分析

本文将会从数据预处理、特征提取、聚类算法选择等多个方面详细介绍Python文本聚类分析的步骤和方法。

一、数据预处理

数据预处理是文本聚类分析的第一步,其目的是对原始文本数据进行去噪、规范化、标准化等处理,以便后续的特征提取和聚类。

常见的文本预处理方法有:

1、去除停用词和标点符号,如“的”、“了”等,可以减小文本的维度,加快计算速度;

import jieba
import re

#去除停用词和标点符号
def clean_text(text):
    stop_words = [word.strip() for word in open('stop_words.txt', 'r', encoding='utf-8')]
    text = re.sub('[^\u4e00-\u9fa5]+', '', text)
    seg_list = jieba.cut(text, cut_all=False)
    cleaned = ''
    for word in seg_list:
        if word not in stop_words:
            cleaned += word + ' '
    return cleaned.strip()

2、文本去重,如果有相同或者高度相似的文本,可以考虑只保留其中一个;

import difflib

#去除重复和高度相似的文本,文件text_list.txt存有多篇文本,每篇文本一行
def deduplicate_text(source_file, target_file):
    with open(source_file, 'r', enco
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值