Codeforces Round #418 (Div. 2) -- C. An impassioned circulation of affection(DP预处理)

Nadeko为了庆祝哥哥Koyomi的生日,计划优化一串纸片装饰。通过最多改变m个纸片的颜色,使其形成包含哥哥最爱颜色的最长连续段。本篇介绍了一种动态规划解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给你一个字符串, 告诉你喜欢的字母,和改变字母的次数,求在次数内 在长连续喜欢字母的长度?

思路:

直接令dp[i][j] 表示改变i 次,喜欢字母为j 的最大长度。

直接n*n*26预处理即可。

#include <bits/stdc++.h>
using namespace std;

const int maxn = 1500 + 10;

char s[maxn];

int dp[maxn][30];

int main(){
    int n;
    scanf("%d",&n);
    scanf("%s", s);

    int len = strlen(s);

    for (int i = 0; i < 26; ++i){
        for (int j = 0; j < n; ++j){
            int sum = 0;
            for (int k = j; k < len; ++k){
                if (s[k] == i+'a')++sum;
                dp[k-j+1-sum][i] = max(dp[k-j+1-sum][i], k-j+1);
            }
        }
    }



    int q;
    scanf("%d",&q);
    char cmd[3];
    while(q--){
        int x,y;
        scanf("%d%s",&x, cmd);
        int ans = 0;
        for (int i = 0; i <= x; ++i){
            ans = max(ans, dp[i][cmd[0]-'a' ]);
        }
        printf("%d\n", ans);
    }
    return 0;
}

C. An impassioned circulation of affection
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it!

Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has n pieces numbered from 1 to n from left to right, and the i-th piece has a colour si, denoted by a lowercase English letter. Nadeko will repaint at most m of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour c — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland.

For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3.

But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has q plans on this, each of which can be expressed as a pair of an integer mi and a lowercase letter ci, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan.

Input

The first line of input contains a positive integer n (1 ≤ n ≤ 1 500) — the length of the garland.

The second line contains n lowercase English letters s1s2... sn as a string — the initial colours of paper pieces on the garland.

The third line contains a positive integer q (1 ≤ q ≤ 200 000) — the number of plans Nadeko has.

The next q lines describe one plan each: the i-th among them contains an integer mi (1 ≤ mi ≤ n) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter ci — Koyomi's possible favourite colour.

Output

Output q lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it.

Examples
input
6
koyomi
3
1 o
4 o
4 m
output
3
6
5
input
15
yamatonadeshiko
10
1 a
2 a
3 a
4 a
5 a
1 b
2 b
3 b
4 b
5 b
output
3
4
5
7
8
1
2
3
4
5
input
10
aaaaaaaaaa
2
10 b
10 z
output
10
10
Note

In the first sample, there are three plans:

  • In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3is the best achievable;
  • In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6;
  • In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值