Sumsets
Time Limit: 2000MS | Memory Limit: 200000K | |
Total Submissions: 15575 | Accepted: 6202 |
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
看的学长们的博客!
判断当前的数值i 如果是奇数,则肯定有一个1组成!dp[i] = dp[i-1]
如果是偶数:如果有1,则加上dp[n-1]可以到现在,
如果没有1,则每一项中都是偶数,可以提出公因式2来!dp[i/2]
dp[i] = dp[i-1]+dp[i/2];
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 1000000 + 10;
const int mod = 1000000000;
int dp[maxn],n;
int main(){
dp[1] = 1;
for (int i = 2; i < maxn; ++i){
if (i & 1)dp[i] = dp[i-1] % mod;
else dp[i] = (dp[i-1]%mod + dp[i/2]%mod)%mod;
}
while(scanf("%d",&n) == 1)printf("%d\n",dp[n]);
return 0;
}