Leading and Trailing

本文介绍了一种高效算法,用于求解大整数n的k次幂的最前三位和最后三位数字。通过快速幂取模运算获取最后三位,利用对数小数部分计算前三位。附带C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).

Output

For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.

Sample Input

5

123456 1

123456 2

2 31

2 32

29 8751919

Sample Output

Case 1: 123 456

Case 2: 152 936

Case 3: 214 648

Case 4: 429 296

Case 5: 665 669

 

后三位数字可以通过快速幂取模运算来获得,前三位数字可以通过对数的小数部分来获得!

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN  1000010
#define LLL 1000000000
#define INF 1000000009
LL Pow(LL x,LL k)
{
    LL ret = 1;
    while (k)
    {
        if (k & 1!=0)
            ret = (ret*x)%1000;
        x = x*x;
        x %= 1000;
        k /= 2;
    }
    return ret;
}
int main()
{
    int T;
    LL n, k;
    cin >> T;
    for (int cas = 1; cas <= T; cas++)
    {
        scanf("%lld%lld", &n, &k);
        LL tmp = n % 1000;
        LL ans2 = Pow(tmp, k)%1000,ans1;
        double num = k*log10(n*1.0);
        num -= LL(num);
        ans1 = LL(pow(10, num) * 100);
        printf("Case %d: %lld %03lld\n", cas, ans1, ans2);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/joeylee97/p/6831310.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值