第三章
双链表
单链表学完后,理所当然的就是轮到双链表了。
3.1 代码实现
双链表的实现如下:
///////////////////////////////////////////////////////////////////////////////
//
// FileName : dlist.h
// Version : 0.10
// Author : Luo Cong
// Date : 2005-1-4 10:33:21
// Comment :
//
///////////////////////////////////////////////////////////////////////////////
#ifndef __DOUBLE_LIST_H__
#define __DOUBLE_LIST_H__
#include <assert.h>
#include <crtdbg.h>
#ifdef _DEBUG
#define DEBUG_NEW new (_NORMAL_BLOCK, THIS_FILE, __LINE__)
#endif
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#ifdef _DEBUG
#ifndef ASSERT
#define ASSERT assert
#endif
#else // not _DEBUG
#ifndef ASSERT
#define ASSERT
#endif
#endif // _DEBUG
template<typename T>
class CNode
{
public:
T data;
CNode<T> *prior;
CNode<T> *next;
CNode() : data(T()), prior(NULL), next(NULL) {}
CNode(const T &initdata) : data(initdata), prior(NULL), next(NULL) {}
};
template<typename T>
class CDList
{
protected:
int m_nCount;
CNode<T> *m_pNodeHead;
CNode<T> *m_pNodeTail;
public:
CDList();
CDList(const T &initdata);
~CDList();
public:
int IsEmpty() const;
int GetCount() const;
int InsertBefore(const int pos, const T data);
int InsertAfter(const int pos, const T data);
int AddHead(const T data);
int AddTail(const T data);
void RemoveAt(const int pos);
void RemoveHead();
void RemoveTail();
void RemoveAll();
T& GetTail();
T GetTail() const;
T& GetHead();
T GetHead() const;
T& GetAt(const int pos);
T GetAt(const int pos) const;
void SetAt(const int pos, T data);
int Find(const T data) const;
T& GetPrev(int &pos);
T& GetNext(int &pos);
};
template<typename T>
inline CDList<T>::CDList() : m_nCount(0), m_pNodeHead(NULL), m_pNodeTail(NULL)
{
}
template<typename T>
inline CDList<T>::CDList(const T &initdata)
: m_nCount(0), m_pNodeHead(NULL), m_pNodeTail(NULL)
{
AddHead(initdata);
}
template<typename T>
inline CDList<T>::~CDList()
{
RemoveAll();
}
template<typename T>
inline T& CDList<T>::GetNext(int &pos)
{
ASSERT(0 != m_nCount);
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
++pos;
return pTmpNode->data;
}
template<typename T>
inline T& CDList<T>::GetPrev(int &pos)
{
ASSERT(0 != m_nCount);
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
--pos;
return pTmpNode->data;
}
template<typename T>
inline int CDList<T>::InsertBefore(const int pos, const T data)
{
int i;
int nRetPos;
CNode<T> *pTmpNode;
CNode<T> *pNewNode;
pNewNode = new CNode<T>;
if (NULL == pNewNode)
{
nRetPos = 0;
goto Exit0;
}
pNewNode->data = data;
// if the list is empty, replace the head node with the new node.
if (NULL == m_pNodeHead)
{
pNewNode->prior = NULL;
pNewNode->next = NULL;
m_pNodeHead = pNewNode;
m_pNodeTail = pNewNode;
nRetPos = 1;
goto Exit1;
}
// is pos range valid?
ASSERT(1 <= pos && pos <= m_nCount);
// insert before head node?
if (1 == pos)
{
pNewNode->prior = NULL;
pNewNode->next = m_pNodeHead;
m_pNodeHead->prior = pNewNode;
m_pNodeHead = pNewNode;
nRetPos = 1;
goto Exit1;
}
// if the list is not empty and is not inserted before head node,
// seek to the pos of the list and insert the new node before it.
pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pNewNode->next = pTmpNode;
pNewNode->prior = pTmpNode->prior;
pTmpNode->prior->next = pNewNode;
pTmpNode->prior = pNewNode;
// if tail node, must update m_pNodeTail
if (NULL == pNewNode->next)
{
m_pNodeTail = pNewNode;
}
nRetPos = pos;
Exit1:
++m_nCount;
Exit0:
return nRetPos;
}
template<typename T>
inline int CDList<T>::InsertAfter(const int pos, const T data)
{
int i;
int nRetPos;
CNode<T> *pNewNode;
CNode<T> *pTmpNode;
pNewNode = new CNode<T>;
if (NULL == pNewNode)
{
nRetPos = 0;
goto Exit0;
}
pNewNode->data = data;
// if the list is empty, replace the head node with the new node.
if (NULL == m_pNodeHead)
{
pNewNode->prior = NULL;
pNewNode->next = NULL;
m_pNodeHead = pNewNode;
m_pNodeTail = pNewNode;
nRetPos = 1;
goto Exit1;
}
// is pos range valid?
ASSERT(1 <= pos && pos <= m_nCount);
// if the list is not empty,
// seek to the pos of the list and insert the new node after it.
pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pNewNode->next = pTmpNode->next;
pNewNode->prior = pTmpNode;
// if NewNode's position is m_pNodeTail, update m_pNodeTail
if (pTmpNode->next == m_pNodeTail)
{
m_pNodeTail->prior = pNewNode;
}
pTmpNode->next = pNewNode;
// if tail node, must update m_pNodeTail
if (NULL == pNewNode->next)
{
m_pNodeTail = pNewNode;
}
nRetPos = pos + 1;
Exit1:
++m_nCount;
Exit0:
return nRetPos;
}
template<typename T>
inline T& CDList<T>::GetAt(const int pos)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline T CDList<T>::GetAt(const int pos) const
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline int CDList<T>::AddHead(const T data)
{
return InsertBefore(1, data);
}
template<typename T>
inline int CDList<T>::AddTail(const T data)
{
return InsertAfter(GetCount(), data);
}
template<typename T>
inline CDList<T>::IsEmpty() const
{
return 0 == m_nCount;
}
template<typename T>
inline CDList<T>::GetCount() const
{
return m_nCount;
}
template<typename T>
inline T& CDList<T>::GetTail()
{
ASSERT(0 != m_nCount);
return m_pNodeTail->data;
}
template<typename T>
inline T CDList<T>::GetTail() const
{
ASSERT(0 != m_nCount);
return m_pNodeTail->data;
}
template<typename T>
inline T& CDList<T>::GetHead()
{
ASSERT(0 != m_nCount);
return m_pNodeHead->data;
}
template<typename T>
inline T CDList<T>::GetHead() const
{
ASSERT(0 != m_nCount);
return m_pNodeHead->data;
}
template<typename T>
inline void CDList<T>::RemoveAt(const int pos)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
// head node?
if (1 == pos)
{
m_pNodeHead = m_pNodeHead->next;
goto Exit1;
}
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pTmpNode->prior->next = pTmpNode->next;
Exit1:
delete pTmpNode;
--m_nCount;
if (0 == m_nCount)
{
m_pNodeTail = NULL;
}
}
template<typename T>
inline void CDList<T>::RemoveHead()
{
ASSERT(0 != m_nCount);
RemoveAt(1);
}
template<typename T>
inline void CDList<T>::RemoveTail()
{
ASSERT(0 != m_nCount);
RemoveAt(m_nCount);
}
template<typename T>
inline void CDList<T>::RemoveAll()
{
int i;
int nCount;
CNode<T> *pTmpNode;
nCount = m_nCount;
for (i = 0; i < nCount; ++i)
{
pTmpNode = m_pNodeHead->next;
delete m_pNodeHead;
m_pNodeHead = pTmpNode;
}
m_nCount = 0;
}
template<typename T>
inline void CDList<T>::SetAt(const int pos, T data)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
CNode<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pTmpNode->data = data;
}
template<typename T>
inline int CDList<T>::Find(const T data) const
{
int i;
int nCount;
CNode<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 0; i < nCount; ++i)
{
if (data == pTmpNode->data)
return i + 1;
pTmpNode = pTmpNode->next;
}
return 0;
}
#endif // __DOUBLE_LIST_H__
调用如下:
///////////////////////////////////////////////////////////////////////////////
//
// FileName : dlist.cpp
// Version : 0.10
// Author : Luo Cong
// Date : 2005-1-4 10:58:22
// Comment :
//
///////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include "dlist.h"
using namespace std;
int main()
{
int i;
int nCount;
CDList<int> dlist;
#ifdef _DEBUG
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif
dlist.AddTail(1);
dlist.AddTail(3);
dlist.InsertBefore(2, 2);
dlist.AddHead(4);
dlist.RemoveTail();
nCount = dlist.GetCount();
for (i = 1; i <= nCount;)
{
cout << dlist.GetNext(i) << endl;
}
}
3.2 说明
单链表的结点中只有一个指向直接后继结点的指针,所以,从某个结点出发只能顺着指针往后查询其他的结点。靠,那如果我想访问某个结点的前一个结点,岂不只能重新从表头结点开始了?效率真低啊!换句话说,在单链表中,GetNext()的时间复杂度为O(1),而GetPrev()的时间复杂度则为O(N)。为克服单链表这种单向性的缺点,我们可以利用——“当当当当”,Only you,就是——双链表。
顾名思义,在双链表的结点中有两个指针,一个指向直接后继,另一个指向直接前驱,在C++语言中表示如下:
struct Node
{
struct Node *prior;
struct Node *next;
T data;
};
大部分对双链表的操作(只涉及到向后方向的指针的操作)都与单链表的相同,但在插入、删除时有很大的不同,在双链表中需同时修改两个方向上的指针。因此,可以直接继承单链表的类来完成双链表,然后改改不一样的函数就行了。但我没有这样做,别问为什么,人品问题而已。
如果你已经熟练掌握了单链表的指针域,那么双链表的这部分应该难不倒你了。不多说了,请看代码吧。如果有bug,请告诉我。^_^