霍夫直线

本文介绍了一种使用Hough变换进行直线检测的方法。通过读取图片并应用Canny边缘检测,然后利用Hough标准直线变换找出图像中的直线,并将检测到的直线在原图像上标记出来。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

示例代码:

         Mat src, src_gray, dst;
	src = imread("D:/vcprojects/images/lines.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_TITLE[] = "input image";
	char OUTPUT_TITLE[] = "hough-line-detection";
	namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);
	namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);
	imshow(INPUT_TITLE, src);

	// extract edge
	Canny(src, src_gray, 150, 200);
	cvtColor(src_gray, dst, CV_GRAY2BGR);
	imshow("edge image", src_gray);

	vector<Vec2f> lines;     
	HoughLines(src_gray, lines, 1, CV_PI / 180, 150, 0, 0);
	for (size_t i = 0; i < lines.size(); i++) { 
		float rho = lines[i][0]; // 极坐标中的r长度
		float theta = lines[i][1]; // 极坐标中的角度
		Point pt1, pt2;         
		double a = cos(theta), b = sin(theta);         
		double x0 = a*rho, y0 = b*rho;      
		// 转换为平面坐标的四个点
		pt1.x = cvRound(x0 + 1000 * (-b));        
		pt1.y = cvRound(y0 + 1000 * (a));         
		pt2.x = cvRound(x0 - 1000 * (-b));         
		pt2.y = cvRound(y0 - 1000 * (a));         
		line(dst, pt1, pt2, Scalar(0, 0, 255), 1, CV_AA); 
	}

	/*
	vector<Vec4f> plines;
	HoughLinesP(src_gray, plines, 1, CV_PI / 180.0, 10, 0, 10);
	Scalar color = Scalar(0, 0, 255);
	for (size_t i = 0; i < plines.size(); i++) {
		Vec4f hline = plines[i];
		line(dst, Point(hline[0], hline[1]), Point(hline[2], hline[3]), color, 3, LINE_AA);
	}*/
	imshow(OUTPUT_TITLE, dst);

程序结果:

import cv2 as cv import numpy as np #直线检测 #使用霍夫直线变换做直线检测,前提条件:边缘检测已经完成 #标准霍夫线变换 def line_detection(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) edges = cv.Canny(gray, 50, 150) #apertureSize参数默认其实就是3 cv.imshow("edges", edges) #cv.HoughLines参数设置:参数1,灰度图像;参数二,以像素为单位的距离精度(一般都是1,进度高,但是速度会慢一点) #参数三,以弧度为单位的角度精度(一般是1rad);参数四,阈值,大于阈值threshold的线段才可以被检测通过并返回到结果中 #该函数返回值为rho与theta lines = cv.HoughLines(edges, 1, np.pi/180, 200) for line in lines: rho, theta = line[0] #line[0]存储的是点到直线的极径和极角,其中极角是弧度表示的。 a = np.cos(theta) #theta是弧度 b = np.sin(theta) x0 = a * rho #代表x = r * cos(theta) y0 = b * rho #代表y = r * sin(theta) x1 = int(x0 + 1000 * (-b)) #计算直线起点横坐标 y1 = int(y0 + 1000 * a) #计算起始起点纵坐标 x2 = int(x0 - 1000 * (-b)) #计算直线终点横坐标 y2 = int(y0 - 1000 * a) #计算直线终点纵坐标 注:这里的数值1000给出了画出的线段长度范围大小,数值越小,画出的线段越短,数值越大,画出的线段越长 cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) #点的坐标必须是元组,不能是列表。 cv.imshow("image-lines", image) #统计概率霍夫线变换 def line_detect_possible_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) edges = cv.Canny(gray, 50, 150, apertureSize=3) # apertureSize参数默认其实就是3 lines = cv.HoughLinesP(edges, 1, np.pi / 180, 60, minLineLength=60, maxLineGap=5) for line in lines: x1, y1, x2, y2 = line[0] cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) cv.imshow("line_detect_possible_demo",image) src = cv.imread("E:/opencv/picture/track.jpg") print(src.shape) cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE) cv.imshow('input_image', src) line_detection(src) src = cv.imread("E:/opencv/picture/track.jpg") #调用上一个函数后,会把传入的src数组改变,所以调用下一个函数时,要重新读取图片 line_detect_possible_demo(src) cv.waitKey(0) cv.destroyAllWindows() 霍夫检测直线原理: 关于hough变换,核心以及难点就是关于就是有原始空间到参数空间的变换上。以直线检测为例,假设有一条直线L,原点到该直线的垂直距离为p,垂线与x轴夹角为θθ,那么这条直线是唯一的,且直线的方程为 ρ=xcosθ+ysinθρ=xcosθ+ysinθ, 如下图所
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值