NoSQL类型介绍及适用场景

随着网络应用程序规模的增长,传统的关系型数据库难以满足需求。NoSQL数据库应运而生,包括键值(Key-Value)、文档(Document-Oriented)、列存储(Column-Family)和图(Graph-Oriented)四种类型,每种类型都有其特定的应用场景和限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应用程序规模的变大

网络应用程序的规模日渐变大,我们需要储存更多的数据、服务更多的用户以及需求更多的计算能力。为了应对这种情形,我们需要不停的扩展。扩展分为两类:一种是纵向扩展,即购买更好的机器,更多的磁盘、更多的内存等等;另一种是横向扩展,即购买更多的机器组成集群。在巨大的规模下,纵向扩展发挥的作用并不是很大。首先单机器性能提升需要巨额的开销并且有着性能的上限,在Google和Facebook这种规模下,永远不可能使用一台机器支撑所有的负载。鉴于这种情况,我们需要新的数据库,因为关系数据库并不能很好的运行在集群上。不错你也可能会去搭建关系数据库集群,但是他们使用的是共享存储,这并不是我们想要的类型。于是就有了以Google、Facebook、Amazon这些试图处理更多传输所引领的NoSQL纪元。

NoSQL纪元

当下已经存在很多的NoSQL数据库,比如MongoDB、Redis、Riak、HBase、Cassandra等等。每一个都拥有以下几个特性中的一个:

  • 不再使用SQL语言,比如MongoDB、Cassandra就有自己的查询语言
  • 通常是开源项目
  • 为集群运行而生
  • 弱结构化——不会严格的限制数据结构类型

NoSQL数据库的类型

NoSQL可以大体上分为4个种类:Key-value、Document-Oriented、Column-Family Databases以及 Graph-Oriented Databases。下面就一览这些类型的特性:

一、 键值(Key-Value)数据库

键值数据库就像在传统语言中使用的哈希表。你可以通过key来添加、查询或者删除数据,鉴于使用主键访问,所以会获得不错的性能及扩展性。

产品:Riak、Redis、Memcached、Amazon’s Dynamo、Project Voldemort

有谁在使用:GitHub (Riak)、BestBuy (Riak)、Twitter (Redis和Memcached)、StackOverFlow (Redis)、 Instagram (Redis)、Youtube (Memcached)、Wikipedia(Memcached)

适用的场景

储存用户信息,比如会话、配置文件、参数、购物车等等。这些信息一般都和ID(键)挂钩,这种情景下键值数据库是个很好的选择。

不适用场景

1. 取代通过键查询,而是通过值来查询。Key-Value数据库中根本没有通过值查询的途径。

2. 需要储存数据之间的关系。在Key-Value数据库中不能通过两个或以上的键来关联数据。

3. 事务的支持。在Key-Value数据库中故障产生时不可以进行回滚。

二、 面向文档(Document-Oriented)数据库

面向文档数据库会将数据以文档的形式储存。每个文档都是自包含的数据单元,是一系列数据项的集合。每个数据项都有一个名称与对应的值,值既可以是简单的数据类型,如字符串、数字和日期等;也可以是复杂的类型,如有序列表和关联对象。数据存储的最小单位是文档,同一个表中存储的文档属性可以是不同的,数据可以使用XML、JSON或者JSONB等多种形式存储。

产品:MongoDB、CouchDB、RavenDB

有谁在使用:SAP (MongoDB)、Codecademy (MongoDB)、Foursquare (MongoDB)、NBC News (RavenDB)

适用的场景

1. 日志。企业环境下,每个应用程序都有不同的日志信息。Document-Oriented数据库并没有固定的模式,所以我们可以使用它储存不同的信息。

2. 分析。鉴于它的弱模式结构,不改变模式下就可以储存不同的度量方法及添加新的度量。

不适用场景

在不同的文档上添加事务。Document-Oriented数据库并不支持文档间的事务,如果对这方面有需求则不应该选用这个解决方案。

三、 列存储(Wide Column Store/Column-Family)数据库

列存储数据库将数据储存在列族(column family)中,一个列族存储经常被一起查询的相关数据。举个例子,如果我们有一个Person类,我们通常会一起查询他们的姓名和年龄而不是薪资。这种情况下,姓名和年龄就会被放入一个列族中,而薪资则在另一个列族中。

产品:Cassandra、HBase

有谁在使用:Ebay (Cassandra)、Instagram (Cassandra)、NASA (Cassandra)、Twitter (Cassandra and HBase)、Facebook (HBase)、Yahoo!(HBase)

适用的场景

1. 日志。因为我们可以将数据储存在不同的列中,每个应用程序可以将信息写入自己的列族中。

2. 博客平台。我们储存每个信息到不同的列族中。举个例子,标签可以储存在一个,类别可以在一个,而文章则在另一个。

不适用场景

1. 如果我们需要ACID事务。Vassandra就不支持事务。

2. 原型设计。如果我们分析Cassandra的数据结构,我们就会发现结构是基于我们期望的数据查询方式而定。在模型设计之初,我们根本不可能去预测它的查询方式,而一旦查询方式改变,我们就必须重新设计列族。

四、 图(Graph-Oriented)数据库

图数据库允许我们将数据以图的方式储存。实体会被作为顶点,而实体之间的关系则会被作为边。比如我们有三个实体,Steve Jobs、Apple和Next,则会有两个“Founded by”的边将Apple和Next连接到Steve Jobs。

产品:Neo4J、Infinite Graph、OrientDB

有谁在使用:Adobe (Neo4J)、Cisco (Neo4J)、T-Mobile (Neo4J)

适用的场景

1. 在一些关系性强的数据中

2. 推荐引擎。如果我们将数据以图的形式表现,那么将会非常有益于推荐的制定

不适用场景

不适合的数据模型。图数据库的适用范围很小,因为很少有操作涉及到整个图。

### 各种 NoSQL 数据库适用应用场景及优缺点 #### 文档型数据库 文档型数据库存储的数据结构化程度较高,通常以 JSON 或 BSON 的形式保存。这类数据库非常适合用于内容管理系统 (CMS),博客平台以及电商网站的商品详情页等应用。 优点在于能够灵活应对复杂嵌套的对象模型,并提供强大的全文索引功能[^2]。缺点则是对于事务的支持相对较弱,在处理大量并发写入操作时性能可能会受到影响。 ```json { "title": "Example Blog Post", "author": { "name": "John Doe", "email": "john@example.com" }, "content": "...", } ``` #### 列族型数据库 列族型数据库主要用于大规模数据分析领域,比如日志分析、物联网设备监控数据记录等场合。其特点是可以高效地读取和更新特定字段而无需加载整个行的内容。 这种类型的数据库具有出色的压缩率和磁盘利用率,但在实现跨多个节点之间的强一致性方面存在挑战[^1]。 ```cassandraql CREATE TABLE IF NOT EXISTS sensor_data ( device_id UUID, timestamp TIMESTAMP, value DOUBLE, PRIMARY KEY ((device_id), timestamp) ); ``` #### 键值对型数据库 键值对型数据库广泛应用于缓存服务(如 Redis)、会话管理等领域。由于只涉及简单的 key-value 映射关系,因此可以达到极高的读写速度。 然而,当面对较为复杂的查询需求时,该类数据库的表现则不尽如意,因为它们缺乏有效的关联查询机制[^3]。 ```bash SET user:1000:name "Alice" GET user:1000:name ``` #### 图形数据库 图形数据库特别适合用来构建社交网络站点、推荐引擎或是任何涉及到实体间高度互联关系的应用程序。它允许快速遍历节点间的连接路径并执行模式匹配查询。 尽管如此,随着图规模的增长,维护成本也会相应增加,而且目前市场上可供选择的产品相对较少。 ```cypher MATCH (a:Person {name:'Alice'})-[:FRIEND]->(b:Person)<-[:WORKS_AT]-(company:Company) RETURN company.name AS companyName; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值