MATLAB非均匀网格梯度计算

本文详细描述了如何在Matlab中为非均匀网格编写梯度计算函数,通过理论推导和代码实现,特别是针对边界点和内部网格点采用了二阶偏心差分和中心差分策略,与内置的gradient函数进行误差对比,显示了自定义函数的高精度优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在matlab中,gradient函数可以很方便的对均匀网格进行梯度计算,但是对于非均匀网格,但是gradient却无法求解非均匀网格的梯度,这一点我之前犯过错误。我之前以为在gradient函数中指定x,y等坐标,其求解的就是非均匀网格梯度了,然而并不是。
在这里插入图片描述
于是,今天下午开始写非均匀网格求梯度的函数。
首先,函数的要求为:
1、边界处采用二阶偏心差分
2、内部网格点采用二阶中心差分
3、计算三维矩阵的梯度

明确目标之后,我们首先进行理论推导:

理论推导

1、内部网格点

在这里插入图片描述
对a1和a3两点分别进行泰勒展开,公式如下:
a 3 = a 2 + a ˙ 2 Δ x 2 + 1 2 a ¨ 2 Δ x 2 2 + O ( Δ x 2 3 ) 1 ◯ a 1 = a 2 − a ˙ 2 Δ x 1 + 1 2 a ¨ 2 Δ x 1 2 + O ( Δ x 1 3 ) 2 ◯ a_{3}=a_{2}+\dot{a}_{2}\Delta x_{2}+\frac{1}{2}\ddot{a}_{2}\Delta x_{2}^{2}+O(\Delta x_{2}^{3})\textcircled{1} \\a_{1}=a_{2}-\dot{a}_{2}\Delta x_{1}+\frac{1}{2}\ddot{a}_{2}\Delta x_{1}^{2}+O(\Delta x_{1}^{3})\textcircled{2} a3=a2+a˙2Δx2+21a¨2Δx22

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值