ZOJ2112-Dynamic Rankings(树状数组套主席树)

本文介绍了一种使用树状数组和主席树解决动态排名查询与更新问题的方法。该方法能够高效处理大规模数据集上的查询与更新操作,适用于需要频繁进行元素排名变化的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dynamic Rankings

Time Limit: 10 Seconds Memory Limit: 32768 KB

The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with the query like to simply find the k-th smallest number of the given N numbers. They have developed a more powerful system such that for N numbers a[1], a[2], …, a[N], you can ask it like: what is the k-th smallest number of a[i], a[i+1], …, a[j]? (For some i<=j, 0< k<=j+1-i that you have given to it). More powerful, you can even change the value of some a[i], and continue to query, all the same.

Your task is to write a program for this computer, which

  • Reads N numbers from the input (1 <= N <= 50,000)

  • Processes M instructions of the input (1 <= M <= 10,000). These instructions include querying the k-th smallest number of a[i], a[i+1], …, a[j] and change some a[i] to t.

Input

The first line of the input is a single number X (0 < X <= 4), the number of the test cases of the input. Then X blocks each represent a single test case.

The first line of each block contains two integers N and M, representing N numbers and M instruction. It is followed by N lines. The (i+1)-th line represents the number a[i]. Then M lines that is in the following format

Q i j k or
C i t

It represents to query the k-th number of a[i], a[i+1], …, a[j] and change some a[i] to t, respectively. It is guaranteed that at any time of the operation. Any number a[i] is a non-negative integer that is less than 1,000,000,000.

There’re NO breakline between two continuous test cases.

Output

For each querying operation, output one integer to represent the result. (i.e. the k-th smallest number of a[i], a[i+1],…, a[j])

There’re NO breakline between two continuous test cases.

Sample Input

2
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3

Sample Output

3
6
3
6

题目大意:动态第k大
解题思路:树状数组套主席树

#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MAXN=6e4+100;
const int M=MAXN*40;
int n,q,m,tot;
int a[MAXN],t[MAXN];
int T[MAXN],lson[M],rson[M],c[M];
int S[MAXN];

struct Query
{
  int kind;
  int l,r,k;
}query[10005];

void inithash(int k)
{
  sort(t,t+k);
  m=unique(t,t+k)-t;
}

int Hash(int x)
{
  return lower_bound(t,t+m,x)-t;
}

int build(int l,int r)
{
  int root=tot++;
  c[root]=0;
  if(l!=r)
  {
    int mid=(l+r)/2;
    lson[root]=build(l,mid);
    rson[root]=build(mid+1,r);
  }
  return root;
}

int Insert(int root,int pos,int val)
{
  int newroot=tot++,tmp=newroot;
  int l=0,r=m-1;
  c[newroot]=c[root]+val;
  while(l<r)
  {
    int mid=(l+r)>>1;
    if(pos<=mid)
    {
      lson[newroot]=tot++;
      rson[newroot]=rson[root];
      newroot=lson[newroot];
      root=lson[root];
      r=mid;
    }else
    {
      rson[newroot]=tot++;
      lson[newroot]=lson[root];
      newroot=rson[newroot];
      root=rson[root];
      l=mid+1;
    }
    c[newroot]=c[root]+val;
  }
  return tmp;
}

int lowbit(int x)
{
  return x&(-x);
}
int use[MAXN];

void add(int x,int pos,int val)
{
  while(x<=n)
  {
    S[x]=Insert(S[x],pos,val);
    x+=lowbit(x);
  }
}

int sum(int x)
{
  int ret=0;
  while(x>0)
  {
    ret+=c[lson[use[x]]];
    x-=lowbit(x);
  }
  return ret;
}

int Query(int left,int right,int k)
{
  int leftroot=T[left-1];
  int rightroot=T[right];
  int l=0,r=m-1;
  for(int i=left-1;i;i-=lowbit(i)) use[i]=S[i];
  for(int i=right;i;i-=lowbit(i))  use[i]=S[i];
  while(l<r)
  {
    int mid=(l+r)/2;
    int tmp=sum(right)-sum(left-1)+c[lson[rightroot]]-c[lson[leftroot]];
    if(tmp>=k)
    {
      r=mid;
      for(int i=left-1;i;i-=lowbit(i)) use[i]=lson[use[i]];
      for(int i=right;i;i-=lowbit(i))  use[i]=lson[use[i]];
      leftroot=lson[leftroot];
      rightroot=lson[rightroot];
    }else
    {
      l=mid+1;
      k-=tmp;
      for(int i=left-1;i;i-=lowbit(i)) use[i]=rson[use[i]];
      for(int i=right;i;i-=lowbit(i)) use[i]=rson[use[i]];
      leftroot=rson[leftroot];
      rightroot=rson[rightroot];
    }
  }
  return l;
}

void Modify(int x,int p,int d)
{
  while(x<=n)
  {
    S[x]=Insert(S[x],p,d);
    x+=lowbit(x);
  }
}

int main()
{
  int cas;
  scanf("%d",&cas );
  while(cas--)
  {
    scanf("%d%d",&n,&q );
    tot=0;
    m=0;
    for(int i=1;i<=n;i++)
    {
      scanf("%d",&a[i] );
      t[m++]=a[i];
    }
    char op[10];
    for(int i=0;i<q;i++)
    {
      scanf("%s",op);
      if(op[0]=='Q')
      {
        query[i].kind=0;
        scanf("%d%d%d",&query[i].l,&query[i].r,&query[i].k );
      }else
      {
        query[i].kind=1;
        scanf("%d%d",&query[i].l,&query[i].r );
        t[m++]=query[i].r;
      }
    }
    inithash(m);
    T[0]=build(0,m-1);
    for(int i=1;i<=n;i++)  T[i]=Insert(T[i-1],Hash(a[i]),1);
    for(int i=1;i<=n;i++)  S[i]=T[0];
    for(int i=0;i<q;i++)
    {
      if(query[i].kind==0)
          printf("%d\n", t[Query(query[i].l,query[i].r,query[i].k)]);
      else
      {
        Modify(query[i].l,Hash(a[query[i].l]),-1);
        Modify(query[i].l,Hash(query[i].r),1);
        a[query[i].l]=query[i].r;
      }
    }
  }
}
/*
2
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3

3
6
3
6
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值