POJ 2018 Best Cow Fences(构造下凸折线)

本文介绍了一种解决最大平均牛数量围栏问题的高效算法。该算法通过滑动窗口和双端队列来确定最佳围栏位置,使得围栏内的平均牛数量达到最大。输入包括一系列田地及其包含的牛的数量,目标是最小化或最大化特定区间内数值的平均值。
Best Cow Fences
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 12527 Accepted: 4063

Description

Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000. 

FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input. 

Calculate the fence placement that maximizes the average, given the constraint. 

Input

* Line 1: Two space-separated integers, N and F. 

* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on. 

Output

* Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields. 

Sample Input

10 6
6 
4
2
10
3
8
5
9
4
1

Sample Output

6500

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=1e5+10;
int a[maxn],deq[maxn];
ll sum[maxn];
bool check(int i,int j,int x,int y)
{
    return (sum[j]-sum[i])*(y-x)>=(sum[y]-sum[x])*(j-i);
}
int main()
{
    int n,f;
    scanf("%d%d",&n,&f);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)
        sum[i]=sum[i-1]+a[i];
    int s=0,t=0;
    deq[t++]=0;
    ll ma=0;
    for(int i=f;i<=n;i++)
    {
        while(s<t-1&&check(deq[s+1],i,deq[s],i))s++;
        ma=max(ma,1000*(sum[i]-sum[deq[s]])/(i-deq[s]));
        while(s<t-1&&check(deq[t-2],deq[t-1],deq[t-1],i-f+1)) t--;
        deq[t++]=i-f+1;
    }
    printf("%I64d\n",ma);
    return 0;
}

### 解题思路 POJ 3613 Cow Relays 问题要求计算在给定的图中,从起点到终点恰好经过 $k$ 条边的最短路径。常规的暴力解法,即每次走一步更新最短路径,时间复杂度为 $O(k * n^3)$,效率较低。可利用二进制思想和矩阵快速幂的方法,将时间复杂度优化到 $O(logK * n^3)$ [^2]。 具体思路如下: 1. **图的表示**:使用邻接矩阵来表示图,矩阵中的元素 `mat[i][j]` 表示从节点 `i` 到节点 `j` 的最短距离,初始值设为无穷大 `INF`。 2. **矩阵乘法的定义**:普通矩阵乘法是对应元素相乘再相加,而这里定义的矩阵乘法是对应元素相加再取最小值。即 `C.mat[i][j] = min(C.mat[i][j], A.mat[i][k] + B.mat[k][j])`,表示从节点 `i` 经过节点 `k` 到节点 `j` 的最短距离。 3. **矩阵快速幂**:通过不断地将矩阵自乘,利用二进制的思想,快速计算出经过 $k$ 条边的最短路径矩阵。 4. **节点编号映射**:由于节点编号可能不连续,使用一个数组 `f` 来将原始节点编号映射到连续的编号,方便矩阵操作。 ### 代码实现 以下是实现该算法的 C++ 代码: ```cpp #include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; #define INF ((1<<30)-1) int n; struct matrix { int mat[201][201]; matrix() { for(int i = 0; i < 201; i++) for(int j = 0; j < 201; j++) mat[i][j] = INF; } }; int f[2001]; matrix mul(matrix A, matrix B) { matrix C; int i, j, k; for(i = 1; i <= n; i++) { for(j = 1; j <= n; j++) { for(k = 1; k <= n; k++) { C.mat[i][j] = min(C.mat[i][j], A.mat[i][k] + B.mat[k][j]); } } } return C; } matrix powmul(matrix A, int k) { matrix B; for(int i = 1; i <= n; i++) B.mat[i][i] = 0; while(k) { if(k & 1) B = mul(B, A); A = mul(A, A); k >>= 1; } return B; } int main() { matrix A; int k, t, s, e, a, b, c; scanf("%d%d%d%d", &k, &t, &s, &e); int num = 1; while(t--) { scanf("%d%d%d", &c, &a, &b); if(f[a] == 0) f[a] = num++; if(f[b] == 0) f[b] = num++; A.mat[f[a]][f[b]] = A.mat[f[b]][f[a]] = c; } n = num - 1; A = powmul(A, k); cout << A.mat[f[s]][f[e]] << endl; return 0; } ``` ### 代码解释 1. **结构体 `matrix`**:定义了一个矩阵结构体,用于存储图的邻接矩阵,构造函数将矩阵元素初始化为无穷大。 2. **函数 `mul`**:实现了自定义的矩阵乘法,计算两个矩阵相乘的结果。 3. **函数 `powmul`**:实现了矩阵快速幂,通过不断地将矩阵自乘,快速计算出经过 $k$ 条边的最短路径矩阵。 4. **主函数 `main`**:读取输入数据,将节点编号映射到连续的编号,初始化邻接矩阵,调用 `powmul` 函数计算经过 $k$ 条边的最短路径矩阵,最后输出从起点到终点的最短距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值