连续子段和最大
求一个子段,它的和最大,我们只需要O(n)O(n)O(n)扫一遍这个数列,不断把新的数加入子段,当子段和变为负数时,把当前整个子段清空,边扫描边记录最大值,这样我们就得到了答案
int ans = -inf;
int sum = 0;
for(int i = 1; i <= n; i++){
sum += a[i];
ans = max(ans, sum);
if(sum < 0)
sum = 0;
}
连续子段和最大且子段长度不小于L
我们可以将子段化为前缀和相减的形式
for(int i = 1; i <= n; i++){
pre[i] = pre[i-1] + a[i];
}
int ans = -inf;
int minn = inf;
for(int i = L; i <= n; i++){
minn = min(minn, pre[i-L]);
ans = max(ans, pre[i] - minn);
}
连续子段平均数最大,子段长度不小于L
显然答案是有单调性的,我们二分答案,如何判定呢,我们将所有数都减去mid,然后我们判定子段不小于L时,连续最大子段和是否大于等于0即可
int check(double x){
for(int i = 1; i <= n; i++)
pre[i] = pre[i-1] + a[i] - x;
double ans = -inf;
double minn = inf;
for(int i = L; i <= n; i++){
minn = min(minn, pre[i-L]);
ans = max(ans, pre[i] - minn);
if(ans >= 0)
return 1;
}
return 0;
}
double l = -1e6, r = 1e6;
while(r - l > 1e-5){
double mid = (l + r) / 2;
if(check(mid))
l = mid;
else
r = mid;
}