原帖地址:http://www.cnblogs.com/jason-jiang/archive/2007/01/13/619643.html
最佳线性滤波理论起源于 40 年代美国科学家 Wiener 和前苏联科学家K олмогоров 等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点, 60 年代 Kalman 把 状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算 法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理 和计算机运算。
现设线性时变系统的离散状态防城和观测方程为:
X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)
Y(k) = H(k)·X(k)+N(k)
其中
X(k)和Y(k)分别是k时刻的状态矢量和观测矢量
F(k,k-1)为状态转移矩阵
U(k)为k时刻动态噪声
T(k,k-1)为系统控制矩阵
H(k)为k时刻观测矩阵
N(k)为k时刻观测噪声
则卡尔曼滤波的算法流程为:
- 预估计X(k)^= F(k,k-1)·X(k-1)
- 计算预估计协方差矩阵
C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
Q(k) = U(k)×U(k)' - 计算卡尔曼增益矩阵
K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
R(k) = N(k)×N(k)' - 更新估计
X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] - 计算更新后估计协防差矩阵
C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' - X(k+1) = X(k)~
C(k+1) = C(k)~
重复以上步骤
其c语言实现代码如下:






























































































C++实现代码如下:
============================
kalman.h
================================
// kalman.h: interface for the kalman class.
//
/ /
#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include < math.h >
#include " cv.h "
class kalman
{
public :
void init_kalman( int x, int xv, int y, int yv);
CvKalman * cvkalman;
CvMat * state;
CvMat * process_noise;
CvMat * measurement;
const CvMat * prediction;
CvPoint2D32f get_predict( float x, float y);
kalman( int x = 0 , int xv = 0 , int y = 0 , int yv = 0 );
// virtual ~kalman();
};
#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
============================ kalman.cpp ================================
#include " kalman.h "
#include < stdio.h >
/* tester de printer toutes les valeurs des vecteurs
*/
/* tester de changer les matrices du noises */
/* replace state by cvkalman->state_post ??? */
CvRandState rng;
const double T = 0.1 ;
kalman::kalman( int x, int xv, int y, int yv)
{
cvkalman = cvCreateKalman( 4 , 4 , 0 );
state = cvCreateMat( 4 , 1 , CV_32FC1 );
process_noise = cvCreateMat( 4 , 1 , CV_32FC1 );
measurement = cvCreateMat( 4 , 1 , CV_32FC1 );
int code = - 1 ;
/* create matrix data */
const float A[] = {
1 , T, 0 , 0 ,
0 , 1 , 0 , 0 ,
0 , 0 , 1 , T,
0 , 0 , 0 , 1
};
const float H[] = {
1 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 0
};
const float P[] = {
pow( 320 , 2 ), pow( 320 , 2 ) / T, 0 , 0 ,
pow( 320 , 2 ) / T, pow( 320 , 2 ) / pow(T, 2 ), 0 , 0 ,
0 , 0 , pow( 240 , 2 ), pow( 240 , 2 ) / T,
0 , 0 , pow( 240 , 2 ) / T, pow( 240 , 2 ) / pow(T, 2 )
};
const float Q[] = {
pow(T, 3 ) / 3 , pow(T, 2 ) / 2 , 0 , 0 ,
pow(T, 2 ) / 2 , T, 0 , 0 ,
0 , 0 , pow(T, 3 ) / 3 , pow(T, 2 ) / 2 ,
0 , 0 , pow(T, 2 ) / 2 , T
};
const float R[] = {
1 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 0
};
cvRandInit( & rng, 0 , 1 , - 1 , CV_RAND_UNI );
cvZero( measurement );
cvRandSetRange( & rng, 0 , 0.1 , 0 );
rng.disttype = CV_RAND_NORMAL;
cvRand( & rng, state );
memcpy( cvkalman -> transition_matrix -> data.fl, A, sizeof (A));
memcpy( cvkalman -> measurement_matrix -> data.fl, H, sizeof (H));
memcpy( cvkalman -> process_noise_cov -> data.fl, Q, sizeof (Q));
memcpy( cvkalman -> error_cov_post -> data.fl, P, sizeof (P));
memcpy( cvkalman -> measurement_noise_cov -> data.fl, R, sizeof (R));
// cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );
// cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));
// cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );
/* choose initial state */
state -> data.fl[ 0 ] = x;
state -> data.fl[ 1 ] = xv;
state -> data.fl[ 2 ] = y;
state -> data.fl[ 3 ] = yv;
cvkalman -> state_post -> data.fl[ 0 ] = x;
cvkalman -> state_post -> data.fl[ 1 ] = xv;
cvkalman -> state_post -> data.fl[ 2 ] = y;
cvkalman -> state_post -> data.fl[ 3 ] = yv;
cvRandSetRange( & rng, 0 , sqrt(cvkalman -> process_noise_cov -> data.fl[ 0 ]), 0 );
cvRand( & rng, process_noise );
}
CvPoint2D32f kalman::get_predict( float x, float y){
/* update state with current position */
state -> data.fl[ 0 ] = x;
state -> data.fl[ 2 ] = y;
/* predict point position */
/* x'k=A鈥k+B鈥k
P'k=A鈥k-1*AT + Q */
cvRandSetRange( & rng, 0 , sqrt(cvkalman -> measurement_noise_cov -> data.fl[ 0 ]), 0 );
cvRand( & rng, measurement );
/* xk=A?xk-1+B?uk+wk */
cvMatMulAdd( cvkalman -> transition_matrix, state, process_noise, cvkalman -> state_post );
/* zk=H?xk+vk */
cvMatMulAdd( cvkalman -> measurement_matrix, cvkalman -> state_post, measurement, measurement );
/* adjust Kalman filter state */
/* Kk=P'k鈥T鈥?H鈥'k鈥T+R)-1
xk=x'k+Kk鈥?zk-H鈥'k)
Pk=(I-Kk鈥)鈥'k */
cvKalmanCorrect( cvkalman, measurement );
float measured_value_x = measurement -> data.fl[ 0 ];
float measured_value_y = measurement -> data.fl[ 2 ];
const CvMat * prediction = cvKalmanPredict( cvkalman, 0 );
float predict_value_x = prediction -> data.fl[ 0 ];
float predict_value_y = prediction -> data.fl[ 2 ];
return (cvPoint2D32f(predict_value_x,predict_value_y));
}
void kalman::init_kalman( int x, int xv, int y, int yv)
{
state -> data.fl[ 0 ] = x;
state -> data.fl[ 1 ] = xv;
state -> data.fl[ 2 ] = y;
state -> data.fl[ 3 ] = yv;
cvkalman -> state_post -> data.fl[ 0 ] = x;
cvkalman -> state_post -> data.fl[ 1 ] = xv;
cvkalman -> state_post -> data.fl[ 2 ] = y;
cvkalman -> state_post -> data.fl[ 3 ] = yv;
}
// kalman.h: interface for the kalman class.
//
/ /
#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include < math.h >
#include " cv.h "
class kalman
{
public :
void init_kalman( int x, int xv, int y, int yv);
CvKalman * cvkalman;
CvMat * state;
CvMat * process_noise;
CvMat * measurement;
const CvMat * prediction;
CvPoint2D32f get_predict( float x, float y);
kalman( int x = 0 , int xv = 0 , int y = 0 , int yv = 0 );
// virtual ~kalman();
};
#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
============================ kalman.cpp ================================
#include " kalman.h "
#include < stdio.h >
/* tester de printer toutes les valeurs des vecteurs

/* tester de changer les matrices du noises */
/* replace state by cvkalman->state_post ??? */
CvRandState rng;
const double T = 0.1 ;
kalman::kalman( int x, int xv, int y, int yv)
{
cvkalman = cvCreateKalman( 4 , 4 , 0 );
state = cvCreateMat( 4 , 1 , CV_32FC1 );
process_noise = cvCreateMat( 4 , 1 , CV_32FC1 );
measurement = cvCreateMat( 4 , 1 , CV_32FC1 );
int code = - 1 ;
/* create matrix data */
const float A[] = {
1 , T, 0 , 0 ,
0 , 1 , 0 , 0 ,
0 , 0 , 1 , T,
0 , 0 , 0 , 1
};
const float H[] = {
1 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 0
};
const float P[] = {
pow( 320 , 2 ), pow( 320 , 2 ) / T, 0 , 0 ,
pow( 320 , 2 ) / T, pow( 320 , 2 ) / pow(T, 2 ), 0 , 0 ,
0 , 0 , pow( 240 , 2 ), pow( 240 , 2 ) / T,
0 , 0 , pow( 240 , 2 ) / T, pow( 240 , 2 ) / pow(T, 2 )
};
const float Q[] = {
pow(T, 3 ) / 3 , pow(T, 2 ) / 2 , 0 , 0 ,
pow(T, 2 ) / 2 , T, 0 , 0 ,
0 , 0 , pow(T, 3 ) / 3 , pow(T, 2 ) / 2 ,
0 , 0 , pow(T, 2 ) / 2 , T
};
const float R[] = {
1 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 0
};
cvRandInit( & rng, 0 , 1 , - 1 , CV_RAND_UNI );
cvZero( measurement );
cvRandSetRange( & rng, 0 , 0.1 , 0 );
rng.disttype = CV_RAND_NORMAL;
cvRand( & rng, state );
memcpy( cvkalman -> transition_matrix -> data.fl, A, sizeof (A));
memcpy( cvkalman -> measurement_matrix -> data.fl, H, sizeof (H));
memcpy( cvkalman -> process_noise_cov -> data.fl, Q, sizeof (Q));
memcpy( cvkalman -> error_cov_post -> data.fl, P, sizeof (P));
memcpy( cvkalman -> measurement_noise_cov -> data.fl, R, sizeof (R));
// cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );
// cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));
// cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );
/* choose initial state */
state -> data.fl[ 0 ] = x;
state -> data.fl[ 1 ] = xv;
state -> data.fl[ 2 ] = y;
state -> data.fl[ 3 ] = yv;
cvkalman -> state_post -> data.fl[ 0 ] = x;
cvkalman -> state_post -> data.fl[ 1 ] = xv;
cvkalman -> state_post -> data.fl[ 2 ] = y;
cvkalman -> state_post -> data.fl[ 3 ] = yv;
cvRandSetRange( & rng, 0 , sqrt(cvkalman -> process_noise_cov -> data.fl[ 0 ]), 0 );
cvRand( & rng, process_noise );
}
CvPoint2D32f kalman::get_predict( float x, float y){
/* update state with current position */
state -> data.fl[ 0 ] = x;
state -> data.fl[ 2 ] = y;
/* predict point position */
/* x'k=A鈥k+B鈥k
P'k=A鈥k-1*AT + Q */
cvRandSetRange( & rng, 0 , sqrt(cvkalman -> measurement_noise_cov -> data.fl[ 0 ]), 0 );
cvRand( & rng, measurement );
/* xk=A?xk-1+B?uk+wk */
cvMatMulAdd( cvkalman -> transition_matrix, state, process_noise, cvkalman -> state_post );
/* zk=H?xk+vk */
cvMatMulAdd( cvkalman -> measurement_matrix, cvkalman -> state_post, measurement, measurement );
/* adjust Kalman filter state */
/* Kk=P'k鈥T鈥?H鈥'k鈥T+R)-1
xk=x'k+Kk鈥?zk-H鈥'k)
Pk=(I-Kk鈥)鈥'k */
cvKalmanCorrect( cvkalman, measurement );
float measured_value_x = measurement -> data.fl[ 0 ];
float measured_value_y = measurement -> data.fl[ 2 ];
const CvMat * prediction = cvKalmanPredict( cvkalman, 0 );
float predict_value_x = prediction -> data.fl[ 0 ];
float predict_value_y = prediction -> data.fl[ 2 ];
return (cvPoint2D32f(predict_value_x,predict_value_y));
}
void kalman::init_kalman( int x, int xv, int y, int yv)
{
state -> data.fl[ 0 ] = x;
state -> data.fl[ 1 ] = xv;
state -> data.fl[ 2 ] = y;
state -> data.fl[ 3 ] = yv;
cvkalman -> state_post -> data.fl[ 0 ] = x;
cvkalman -> state_post -> data.fl[ 1 ] = xv;
cvkalman -> state_post -> data.fl[ 2 ] = y;
cvkalman -> state_post -> data.fl[ 3 ] = yv;
}