
pytorch
pytorch学习
AILEARNER_L
这个作者很懒,什么都没留下…
展开
-
torch.narrow(input,dim,start,length)或者tensor.narrow(dim,start,length)
narrow可以理解为对张量的一种剪裁,且他们共用相同的storgea=torch.tensor([i for i in range(0,9)]).reshape(3,3)print(a)b=torch.narrow(input=a,dim=0,start=0,length=2)b#output:tensor([[0, 1, 2], [3, 4, 5], ...原创 2020-04-15 15:04:58 · 455 阅读 · 0 评论 -
tensor.contiguous()
Returns acontiguoustensor containing the same data asselftensor. Ifselftensor iscontiguous, this function returns theselftensor.普通的张良在内存中都是连续存放的,然而有些张量经过一些处理后(如permute)后就不是连续的了,此时这些张量无法用基于连...原创 2020-04-03 14:45:47 · 549 阅读 · 0 评论 -
tensor.permute(dim_index)
改变张量维度排列>>> x = torch.randn(2, 3, 5)>>> x.size()torch.Size([2, 3, 5])>>> x.permute(2, 0, 1).size()torch.Size([5, 2, 3])原创 2020-04-03 14:31:05 · 426 阅读 · 0 评论 -
torch.max(input,dim)
a=torch.randn(1,2,3)b=torch.max(a,dim=0).valuesc=torch.max(a,dim=1).valuesd=torch.max(a,dim=2).valuesb.shape=[2,3]c.shape=[1,3]d.shape=[1,2]原创 2020-03-07 11:34:11 · 927 阅读 · 0 评论 -
torch.cat 张量合并
合并:torch.cat(inputs=(a, b), dimension=1)将a,b沿着第1维合并,dimension=-1时沿着最后一维合并。原创 2020-03-07 10:58:26 · 1490 阅读 · 0 评论 -
torch.nn.functional.fold
torch.nn.functional.fold(input,output_size,kernel_size,dilation=1,padding=0,stride=1)将一组滑动局部块张量组合成一个包含这些张量的大张量。注意:Currently, only 4-D output tensors (batched image-like tensors) are support...原创 2020-03-06 18:58:58 · 1857 阅读 · 0 评论 -
torch.nn.functional.unfold
torch.nn.functional.unfold(input,kernel_size,dilation=1,padding=0,stride=1)从批量的输入张量中(batch_size,channel,H,W)提取滑动局部块(kernel_size的正方形)。Warning:Currently, only 4-D input tensors (batched image-li...原创 2020-03-06 18:03:02 · 3484 阅读 · 0 评论 -
pytorch模型的保存
# 保存和加载整个模型torch.save(model_object, 'model.pkl')model = torch.load('model.pkl')# 仅保存和加载模型参数(推荐使用)torch.save(model_object.state_dict(), 'params.pkl')model_object.load_state_dict(torch.load('par...原创 2020-02-23 09:14:16 · 208 阅读 · 0 评论 -
torchvision数据集导入
CIFAR10transform = torchvision.transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) #首先torchvision输出的图片的范围都是[0,1] ...原创 2020-02-23 08:52:52 · 1459 阅读 · 0 评论 -
卷积层计算公式
O=(I-K+2P)/S +1原创 2020-02-20 14:59:55 · 1688 阅读 · 0 评论 -
torch.autograd.Variable(tensor,requires_grad=False,volatile=True)
Variable:类似于一个tensor的升级版,里面包含了requires_grad,grad_fn,voliatea=Variable(torch.tensor([1]),volatile=True)b=Variable(torch.tensor([1]),requires_grad=False)voliate:当atensor的requires_grad=True后,与a相连的...原创 2020-02-20 12:26:41 · 3014 阅读 · 0 评论