1. 对冲比率
1.1 The optimal hedge ratio
H R = ρ S , F σ S σ F HR=\rho_{S,F}\frac{\sigma_S}{\sigma_F} HR=ρS,FσFσS
β = C o v ( S , F ) σ F 2 = ρ σ F σ S σ F 2 = ρ σ S σ F = h ∗ \beta=\frac{Cov(S,F)}{\sigma^2_F}=\frac{\rho\sigma_F\sigma_S}{\sigma^2_F}=\frac{\rho\sigma_S}{\sigma_F}=h^* β=σF2Cov(S,F)=σF2ρσFσS=σFρσS=h∗
一份现货用多少个期货来对冲
1.2 Optimal Number of Futures Contracts
N ∗ = h ∗ N A Q F N^*=\frac{h^*N_A}{Q_F} N∗=QFh∗NA
一份现货要用多少份期货合约来对冲
2. 股指期货对冲
Hedging an existing equity portfolio with index futures
number of contracts = ( β ∗ − β ) V A V F \text{number of contracts}=(\beta^*-\beta)\frac{V_A}{V_F} number of contracts=(β∗−β)VFVA
target beta 可以是任意的值
3. 利率
F V = A ( 1 + R m ) m n ⟺ F V = A e R n FV=A\left(1+\frac{R}{m}\right)^{mn} \iff FV=Ae^{Rn} FV=A(1+mR)mn⟺FV=AeRn
注意离散复利和连续复利之间的转换
4. 远期利率
R Forward = R 2 T 2 − R 1 T 1 T 2 − T 1 R_{\text{Forward}}=\frac{R_2T_2-R_1T_1}{T_2-T_1} RForward=T2−T1R2T2−R1T1
通过画图法来进行记忆
5. 利率报价
Full Price = Clean Price + Accrued Interest \text{Full Price} = \text{Clean Price} + \text{Accrued Interest} Full Price=Clean Price+Accrued Interest
Accrued Interest = Number of days between dates Number of days in reference period × Interest earned in redference period \text{Accrued Interest} = \frac{ \text{Number of days between dates}}{ \text{Number of days in reference period}}\times \text{Interest earned in redference period} Accrued Interest=Number of days in reference periodNumber of days between dates×Interest earned in redference period
注意使用计算器计算时间跨度
6. 利率互换 Interest Rate Swaps
C = 1 − B n B 1 + B 2 + ⋯ + B n C=\frac{1-B_n}{B_1+B_2+\dots+B_n} C=B1+B2+⋯+Bn1−Bn
求swap rate, 会算discount factor, 常规考法
7. 股票期权的性质
Put-Call Parity (European)
c + X e − r T = S + p c+Xe^{-rT}=S+p c+Xe−rT=S+p
记忆方法 C K = P S CK=PS CK=PS
8. 股票组合的期权策略
8.1 Covered Call
Short Call + Long Stock
Profit = ( S T − S 0 ) − [ m a x { 0 , ( S T − X ) } − C ] \text{Profit}=(S_T-S_0)-[max \{0,(S_T-X)\}-C] Profit=(ST−S0)−[max{0,(ST−X)}−C]
8.2 Protective Put
Long Put + Long Stock
Profit = ( S T − S 0 ) + [ m a x { 0 , ( X − S T ) } − P ] \text{Profit}=(S_T-S_0)+[max \{0,(X-S_T)\}-P] Profit=(ST−S0)+[max{0,(X−ST)}−P]
8.3 Bull Spread
Bull Call Spread = Long Call at X L X_L XL + Short Call at X H X_H XH
Profit = [ m a x { 0 , ( S T − X L ) } − C L ] − [ m a x { 0 , ( S T − X H ) } − C H ] \text{Profit}=[max \{0,(S_T-X_L)\}-C_L]-[max \{0,(S_T-X_H)\}-C_H] Profit=[max{0,(ST−XL)}−CL]−[max{0,(ST−XH)}−CH]
Bull Put Spread = Long Put at X L X_L XL + Short Put at X H X_H XH
Profit = [ m a x { 0 , ( X L − S T ) } − P L ] − [ m a x { 0 , ( X H − S T ) } − P H ] \text{Profit}=[max \{0,(X_L-S_T)\}-P_L]-[max \{0,(X_H-S_T)\}-P_H] Profit=[max{0,(XL−ST)}−PL]−[max{0,(XH−ST)}−PH]
8.4 Bear Spread
Bear Call Spread = Short Call at X L X_L XL + Long Call at X H X_H XH
Profit = − [ m a x { 0 , ( S T − X L ) } − C L ] + [ m a x { 0 , ( S T − X H ) } − C H ] \text{Profit}=-[max \{0,(S_T-X_L)\}-C_L]+[max \{0,(S_T-X_H)\}-C_H] Profit=−[max{0,(ST−XL)}−CL]+[max{0,(ST−XH)}−CH]
Bear Put Spread = Short Put at
X
L
X_L
XL + Long Put at
X
H
X_H
XH
Profit
=
−
[
m
a
x
{
0
,
(
X
L
−
S
T
)
}
−
P
L
]
+
[
m
a
x
{
0
,
(
X
H
−
S
T
)
}
−
P
H
]
\text{Profit}=-[max \{0,(X_L-S_T)\}-P_L]+[max \{0,(X_H-S_T)\}-P_H]
Profit=−[max{0,(XL−ST)}−PL]+[max{0,(XH−ST)}−PH]
8.5 Butterfly Spread
Butterfly Spread Using Calls = long call at X L X_L XL +long call at X H X_H XH+short two calls at X M X_M XM
Profit = [ m a x { 0 , ( S T − X L ) } − C L ] + [ m a x { 0 , ( S T − X H ) } − C H ] − 2 [ m a x { 0 , ( S T − X M ) } − C M ] \text{Profit}=[max \{0,(S_T-X_L)\}-C_L]+[max \{0,(S_T-X_H)\}-C_H]-2[max \{0,(S_T-X_M)\}-C_M] Profit=[max{0,(ST−XL)}−CL]+[max{0,(ST−XH)}−CH]−2[max{0,(ST−XM)}−CM]
Butterfly Spread Using Puts = long put at X L X_L XL +long put at X H X_H XH+short two puts at X M X_M XM
Profit = [ m a x { 0 , ( X L − S T ) } − P L ] + [ m a x { 0 , ( X H − S T ) } − P H ] − 2 [ m a x { 0 , ( X M − S T ) } − P M ] \text{Profit}=[max \{0,(X_L-S_T)\}-P_L]+[max \{0,(X_H-S_T)\}-P_H]-2[max \{0,(X_M-S_T)\}-P_M] Profit=[max{0,(XL−ST)}−PL]+[max{0,(XH−ST)}−PH]−2[max{0,(XM−ST)}−PM]
9. Greeks
Δ = ∂ c ∂ S = N ( d 1 ) ∼ ( 0 , 1 ) \Delta=\frac{\partial c}{\partial S}=N(d_1)\sim(0,1) Δ=∂S∂c=N(d1)∼(0,1)
Δ = ∂ p ∂ S = N ( d 1 ) − 1 ∼ ( − 1 , 0 ) \Delta=\frac{\partial p}{\partial S}=N(d_1)-1\sim(-1,0) Δ=∂S∂p=N(d1)−1∼(−1,0)
portfolio delta = Δ p = ∑ i = 1 n w i Δ i \text{portfolio delta}=\Delta_p=\sum^n_{i=1}w_i\Delta_i portfolio delta=Δp=i=1∑nwiΔi
10. 二叉树
10.1 Synthetic Call Replication
call price = hedge ratio × [ stock price − P V ( borrowing ) ] \text{call price}=\text{hedge ratio}\times[\text{stock price}-PV(\text{borrowing})] call price=hedge ratio×[stock price−PV(borrowing)]
H R = c U − c D S U − S D HR=\frac{c_U-c_D}{S_U-S_D} HR=SU−SDcU−cD
括号中内容为 bankruptcy-free-portfolio.
10.2 Risk-Neutral Valuation
p = e r Δ t − d u − d → u = e σ Δ t , d = 1 / u = e − σ Δ t p=\frac{e^{r\Delta t}-d}{u-d} \to u=e^{\sigma\Delta t},\;d=1/u=e^{-\sigma\Delta t} p=u−derΔt−d→u=eσΔt,d=1/u=e−σΔt
S e r Δ t = p S u + ( 1 − p ) S d Se^{r\Delta t}=pSu+(1-p)Sd SerΔt=pSu+(1−p)Sd
记住 u u u和 d d d,学会构建二叉树模型
11. BSM模式
d 1 = I n ( S 0 / T ) + [ R f c + ( 0.5 × σ 2 ) ] × T σ × T d_1=\frac{In(S_0/T)+[R^c_f+(0.5\times \sigma^2)]\times T}{\sigma \times\sqrt{T}} d1=σ×TIn(S0/T)+[Rfc+(0.5×σ2)]×T
d 2 = d 1 − σ T d_2=d_1-\sigma\sqrt{T} d2=d1−σT
C 0 = [ S 0 × N ( d 1 ) ] − [ X × e − R f c T × N ( d 2 ) ] C_0=[S_0\times N(d_1)]-[X\times e^{-R^c_f T}\times N(d_2)] C0=[S0×N(d1)]−[X×e−RfcT×N(d2)]
Valuation of Warrants
N N + M × value of regular call option \frac{N}{N+M} \times \text{value of regular call option} N+MN×value of regular call option
N N N 为之前股票在外发行的数量, M M M 为权证行权导致的新发现的股票数量
12. 大宗商品投资-期货定价
12.1 Convenience Yield
F = ( S + U ) ( 1 + R 1 + Y ) T → Y = ( S + U F ) 1 T ( 1 + R ) − 1 F=(S+U)\left(\frac{1+R}{1+Y}\right)^T\to Y=\left(\frac{S+U}{F}\right)^{\frac{1}{T}}(1+R)-1 F=(S+U)(1+Y1+R)T→Y=(FS+U)T1(1+R)−1
U U U是storage costs的现值
12.2 Lease Rate
F = S ( 1 + R 1 + l ) T → l = ( S F ) 1 T ( 1 + R ) − 1 F=S\left(\frac{1+R}{1+l}\right)^T\to l=\left(\frac{S}{F}\right)^{\frac{1}{T}}(1+R)-1 F=S(1+l1+R)T→l=(FS)T1(1+R)−1
13. 外汇管理
13.1 名义利率和实际利率
( 1 + R n o m ) = ( 1 + R r e a l ) ( 1 + R i n f ) → R n o m ≈ R r e a l + R i n f (1+R_{nom})=(1+R_{real})(1+R_{inf})\to R_{nom}\approx R_{real}+R_{inf} (1+Rnom)=(1+Rreal)(1+Rinf)→Rnom≈Rreal+Rinf
13.2 Covered Interest Parity
F = S [ ( 1 + R Y Y Y ) ( 1 + R X X X ) ] T F=S\left[\frac{(1+R_{YYY})}{(1+R_{XXX})}\right]^T F=S[(1+RXXX)(1+RYYY)]T
F = S × e ( R Y Y Y − R X X X ) T F=S\times e^{(R_{YYY}-R_{XXX})T} F=S×e(RYYY−RXXX)T