3. Fomula-Financial Market and Product

1. 对冲比率

1.1 The optimal hedge ratio

H R = ρ S , F σ S σ F HR=\rho_{S,F}\frac{\sigma_S}{\sigma_F} HR=ρS,FσFσS

β = C o v ( S , F ) σ F 2 = ρ σ F σ S σ F 2 = ρ σ S σ F = h ∗ \beta=\frac{Cov(S,F)}{\sigma^2_F}=\frac{\rho\sigma_F\sigma_S}{\sigma^2_F}=\frac{\rho\sigma_S}{\sigma_F}=h^* β=σF2Cov(S,F)=σF2ρσFσS=σFρσS=h

一份现货用多少个期货来对冲

1.2 Optimal Number of Futures Contracts

N ∗ = h ∗ N A Q F N^*=\frac{h^*N_A}{Q_F} N=QFhNA

一份现货要用多少份期货合约来对冲

2. 股指期货对冲

Hedging an existing equity portfolio with index futures

number of contracts = ( β ∗ − β ) V A V F \text{number of contracts}=(\beta^*-\beta)\frac{V_A}{V_F} number of contracts=(ββ)VFVA

target beta 可以是任意的值

3. 利率

F V = A ( 1 + R m ) m n    ⟺    F V = A e R n FV=A\left(1+\frac{R}{m}\right)^{mn} \iff FV=Ae^{Rn} FV=A(1+mR)mnFV=AeRn

注意离散复利和连续复利之间的转换

4. 远期利率

R Forward = R 2 T 2 − R 1 T 1 T 2 − T 1 R_{\text{Forward}}=\frac{R_2T_2-R_1T_1}{T_2-T_1} RForward=T2T1R2T2R1T1

通过画图法来进行记忆

5. 利率报价

Full Price = Clean Price + Accrued Interest \text{Full Price} = \text{Clean Price} + \text{Accrued Interest} Full Price=Clean Price+Accrued Interest

Accrued Interest = Number of days between dates Number of days in reference period × Interest earned in redference period \text{Accrued Interest} = \frac{ \text{Number of days between dates}}{ \text{Number of days in reference period}}\times \text{Interest earned in redference period} Accrued Interest=Number of days in reference periodNumber of days between dates×Interest earned in redference period

注意使用计算器计算时间跨度

6. 利率互换 Interest Rate Swaps

C = 1 − B n B 1 + B 2 + ⋯ + B n C=\frac{1-B_n}{B_1+B_2+\dots+B_n} C=B1+B2++Bn1Bn

求swap rate, 会算discount factor, 常规考法

7. 股票期权的性质

Put-Call Parity (European)

c + X e − r T = S + p c+Xe^{-rT}=S+p c+XerT=S+p

记忆方法 C K = P S CK=PS CK=PS

8. 股票组合的期权策略

8.1 Covered Call

Short Call + Long Stock

Profit = ( S T − S 0 ) − [ m a x { 0 , ( S T − X ) } − C ] \text{Profit}=(S_T-S_0)-[max \{0,(S_T-X)\}-C] Profit=(STS0)[max{0,(STX)}C]

8.2 Protective Put

Long Put + Long Stock

Profit = ( S T − S 0 ) + [ m a x { 0 , ( X − S T ) } − P ] \text{Profit}=(S_T-S_0)+[max \{0,(X-S_T)\}-P] Profit=(STS0)+[max{0,(XST)}P]

8.3 Bull Spread

Bull Call Spread = Long Call at X L X_L XL + Short Call at X H X_H XH

Profit = [ m a x { 0 , ( S T − X L ) } − C L ] − [ m a x { 0 , ( S T − X H ) } − C H ] \text{Profit}=[max \{0,(S_T-X_L)\}-C_L]-[max \{0,(S_T-X_H)\}-C_H] Profit=[max{0,(STXL)}CL][max{0,(STXH)}CH]

Bull Put Spread = Long Put at X L X_L XL + Short Put at X H X_H XH

Profit = [ m a x { 0 , ( X L − S T ) } − P L ] − [ m a x { 0 , ( X H − S T ) } − P H ] \text{Profit}=[max \{0,(X_L-S_T)\}-P_L]-[max \{0,(X_H-S_T)\}-P_H] Profit=[max{0,(XLST)}PL][max{0,(XHST)}PH]

8.4 Bear Spread

Bear Call Spread = Short Call at X L X_L XL + Long Call at X H X_H XH

Profit = − [ m a x { 0 , ( S T − X L ) } − C L ] + [ m a x { 0 , ( S T − X H ) } − C H ] \text{Profit}=-[max \{0,(S_T-X_L)\}-C_L]+[max \{0,(S_T-X_H)\}-C_H] Profit=[max{0,(STXL)}CL]+[max{0,(STXH)}CH]

Bear Put Spread = Short Put at X L X_L XL + Long Put at X H X_H XH
Profit = − [ m a x { 0 , ( X L − S T ) } − P L ] + [ m a x { 0 , ( X H − S T ) } − P H ] \text{Profit}=-[max \{0,(X_L-S_T)\}-P_L]+[max \{0,(X_H-S_T)\}-P_H] Profit=[max{0,(XLST)}PL]+[max{0,(XHST)}PH]

8.5 Butterfly Spread

Butterfly Spread Using Calls = long call at X L X_L XL +long call at X H X_H XH+short two calls at X M X_M XM

Profit = [ m a x { 0 , ( S T − X L ) } − C L ] + [ m a x { 0 , ( S T − X H ) } − C H ] − 2 [ m a x { 0 , ( S T − X M ) } − C M ] \text{Profit}=[max \{0,(S_T-X_L)\}-C_L]+[max \{0,(S_T-X_H)\}-C_H]-2[max \{0,(S_T-X_M)\}-C_M] Profit=[max{0,(STXL)}CL]+[max{0,(STXH)}CH]2[max{0,(STXM)}CM]

Butterfly Spread Using Puts = long put at X L X_L XL +long put at X H X_H XH+short two puts at X M X_M XM

Profit = [ m a x { 0 , ( X L − S T ) } − P L ] + [ m a x { 0 , ( X H − S T ) } − P H ] − 2 [ m a x { 0 , ( X M − S T ) } − P M ] \text{Profit}=[max \{0,(X_L-S_T)\}-P_L]+[max \{0,(X_H-S_T)\}-P_H]-2[max \{0,(X_M-S_T)\}-P_M] Profit=[max{0,(XLST)}PL]+[max{0,(XHST)}PH]2[max{0,(XMST)}PM]

9. Greeks

Δ = ∂ c ∂ S = N ( d 1 ) ∼ ( 0 , 1 ) \Delta=\frac{\partial c}{\partial S}=N(d_1)\sim(0,1) Δ=Sc=N(d1)(0,1)

Δ = ∂ p ∂ S = N ( d 1 ) − 1 ∼ ( − 1 , 0 ) \Delta=\frac{\partial p}{\partial S}=N(d_1)-1\sim(-1,0) Δ=Sp=N(d1)1(1,0)

portfolio delta = Δ p = ∑ i = 1 n w i Δ i \text{portfolio delta}=\Delta_p=\sum^n_{i=1}w_i\Delta_i portfolio delta=Δp=i=1nwiΔi

10. 二叉树

10.1 Synthetic Call Replication

call price = hedge ratio × [ stock price − P V ( borrowing ) ] \text{call price}=\text{hedge ratio}\times[\text{stock price}-PV(\text{borrowing})] call price=hedge ratio×[stock pricePV(borrowing)]

H R = c U − c D S U − S D HR=\frac{c_U-c_D}{S_U-S_D} HR=SUSDcUcD

括号中内容为 bankruptcy-free-portfolio.

10.2 Risk-Neutral Valuation

p = e r Δ t − d u − d → u = e σ Δ t ,    d = 1 / u = e − σ Δ t p=\frac{e^{r\Delta t}-d}{u-d} \to u=e^{\sigma\Delta t},\;d=1/u=e^{-\sigma\Delta t} p=uderΔtdu=eσΔt,d=1/u=eσΔt

S e r Δ t = p S u + ( 1 − p ) S d Se^{r\Delta t}=pSu+(1-p)Sd SerΔt=pSu+(1p)Sd

记住 u u u d d d,学会构建二叉树模型

11. BSM模式

d 1 = I n ( S 0 / T ) + [ R f c + ( 0.5 × σ 2 ) ] × T σ × T d_1=\frac{In(S_0/T)+[R^c_f+(0.5\times \sigma^2)]\times T}{\sigma \times\sqrt{T}} d1=σ×T In(S0/T)+[Rfc+(0.5×σ2)]×T

d 2 = d 1 − σ T d_2=d_1-\sigma\sqrt{T} d2=d1σT

C 0 = [ S 0 × N ( d 1 ) ] − [ X × e − R f c T × N ( d 2 ) ] C_0=[S_0\times N(d_1)]-[X\times e^{-R^c_f T}\times N(d_2)] C0=[S0×N(d1)][X×eRfcT×N(d2)]

Valuation of Warrants

N N + M × value of regular call option \frac{N}{N+M} \times \text{value of regular call option} N+MN×value of regular call option

N N N 为之前股票在外发行的数量, M M M 为权证行权导致的新发现的股票数量

12. 大宗商品投资-期货定价

12.1 Convenience Yield

F = ( S + U ) ( 1 + R 1 + Y ) T → Y = ( S + U F ) 1 T ( 1 + R ) − 1 F=(S+U)\left(\frac{1+R}{1+Y}\right)^T\to Y=\left(\frac{S+U}{F}\right)^{\frac{1}{T}}(1+R)-1 F=(S+U)(1+Y1+R)TY=(FS+U)T1(1+R)1

U U U是storage costs的现值

12.2 Lease Rate

F = S ( 1 + R 1 + l ) T → l = ( S F ) 1 T ( 1 + R ) − 1 F=S\left(\frac{1+R}{1+l}\right)^T\to l=\left(\frac{S}{F}\right)^{\frac{1}{T}}(1+R)-1 F=S(1+l1+R)Tl=(FS)T1(1+R)1

13. 外汇管理

13.1 名义利率和实际利率

( 1 + R n o m ) = ( 1 + R r e a l ) ( 1 + R i n f ) → R n o m ≈ R r e a l + R i n f (1+R_{nom})=(1+R_{real})(1+R_{inf})\to R_{nom}\approx R_{real}+R_{inf} (1+Rnom)=(1+Rreal)(1+Rinf)RnomRreal+Rinf

13.2 Covered Interest Parity

F = S [ ( 1 + R Y Y Y ) ( 1 + R X X X ) ] T F=S\left[\frac{(1+R_{YYY})}{(1+R_{XXX})}\right]^T F=S[(1+RXXX)(1+RYYY)]T

F = S × e ( R Y Y Y − R X X X ) T F=S\times e^{(R_{YYY}-R_{XXX})T} F=S×e(RYYYRXXX)T

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值