resnet 18 实现

一、残差块

让我们聚焦于神经网络局部:如图7.6.2所示,假设我们的原始输入为x,而希望学出的理想映射为f(x)(作为 图7.6.2上方激活函数的输入)。 图7.6.2左图虚线框中的部分需要直接拟合出该映射f(x),而右图虚线框中的部分则需要拟合出残差映射f(x)-x。 残差映射在现实中往往更容易优化。 以本节开头提到的恒等映射作为我们希望学出的理想映射f(x),我们只需将 图7.6.2中右图虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么f(x)即为恒等映射。 实际中,当理想映射f(x)极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。 图7.6.2右图是ResNet的基础架构–残差块(residual block)。 在残差块中,输入可通过跨层数据线路更快地向前传播。
在这里插入图片描述
ResNet沿用了VGG完整的3x3卷积层设计。 残差块里首先有2个有相同输出通道数的3x3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的1x1卷积层来将输入变换成需要的形状后再做相加运算。 残差块的实现如下:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Residual(nn.Module):  #@save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

如 图7.6.3所示,此代码生成两种类型的网络: 一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。 另一种是当use_1x1conv=True时,添加通过1x1卷积调整通道和分辨率。
在这里插入图片描述
下面我们来查看输入和输出形状一致的情况。

blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

在这里插入图片描述
我们也可以在增加输出通道数的同时,减半输出的高和宽。

blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape

在这里插入图片描述

二、ResNet模型

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7x7卷积层后,接步幅为2的3x3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。

def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

接着在ResNet加入所有残差块,这里每个模块使用2个残差块。

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。

net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层(不包括恒等映射的1x1卷积层)。 加上第一个7x7卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18。 通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。 虽然ResNet的主体架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。 图7.6.4描述了完整的ResNet-18。

在这里插入图片描述
在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。 在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

在这里插入图片描述

三、训练模型

同之前一样,我们在Fashion-MNIST数据集上训练ResNet。

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

### 使用 ResNet18 实现图像分类 ResNet 是一种经典的卷积神经网络架构,广泛应用于图像分类任务。以下是基于 PyTorch 的 ResNet18 图像分类实现的详细说明。 #### 加载预训练模型并修改最后一层 PyTorch 提供了 `torchvision.models` 模块来加载各种预定义的 CNN 架构,其中包括 ResNet18。为了适应特定数据集(如猫狗分类),需要调整全连接层以匹配目标类别的数量。 ```python import torch from torchvision import models, transforms import torch.nn as nn # 加载预训练的 ResNet18 模型 model = models.resnet18(pretrained=True) # 修改最后的全连接层以适配新的类别数(假设为二分类) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 2) # 假设只有两个类别:猫和狗 ``` 此部分代码通过替换原始 ResNet18 中的最后一层全连接层,使其适用于自定义的数据集[^1]。 #### 数据预处理与增强 在实际应用中,通常会对输入图片进行标准化和数据增强操作,以便提高模型泛化能力。 ```python data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } ``` 这些变换包括随机裁剪、水平翻转以及颜色通道归一化等步骤,有助于提升模型性能[^2]。 #### 定义损失函数与优化器 对于多分类问题,交叉熵损失是一个常见的选择;而 Adam 或 SGD 则常被用来作为优化算法。 ```python criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) ``` 这里设置了学习率调度器,在每经过一定轮次后降低学习速率,从而帮助收敛过程更加稳定。 #### 训练循环示例 下面给出一个简单的训练框架: ```python def train_model(dataloaders, dataset_sizes, num_epochs=25): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) best_acc = 0.0 for epoch in range(num_epochs): print(f'Epoch {epoch}/{num_epochs - 1}') print('-' * 10) for phase in ['train', 'val']: if phase == 'train': model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}') if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = model.state_dict() model.load_state_dict(best_model_wts) return model ``` 该函数实现了标准的监督学习流程,并保存验证阶段表现最好的权重参数。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值