5. 最长回文子串

这是我目前看到最舒服的一个了,这个有点复杂,今日先copy,再消化。

居然也有这个成绩,只能说给力。
在这里插入图片描述


void help(char *s, int N, int left, int right, int *start, int *len) {
    while (left >= 0 && right < N && s[left] == s[right])
        left--, right++;
    if (right - left - 1 > *len) {  // 如果找到更长的子串,保存其信息
        *start = left + 1;
        *len = right - left - 1;
    }
}
char * longestPalindrome(char * s){
    int N = strlen(s), start = 0, len = 0;  // N 字符串长度, start 子串起始位置, len 子串长度
    for (int i = 0; i < N; i++)     // 奇数长度的回文子串
        help(s, N, i-1, i+1, &start, &len);
    for (int i = 0; i < N; i++)     // 偶数长度的回文子串
        help(s, N, i, i+1, &start, &len);
    s[start + len] = '\0';          // 原地修改返回
    return s + start;
}
内容概要:本文详细介绍了一个基于Java和Vue的联邦学习隐私保护推荐系统的设计与实现。系统采用联邦学习架构,使用户数据在本地完成模型训练,仅上传加密后的模型参数或梯度,通过中心服务器进行联邦平均聚合,从而实现数据隐私保护与协同建模的双重目标。项目涵盖完整的系统架构设计,包括本地模型训练、中心参数聚合、安全通信、前后端解耦、推荐算法插件化等模块,并结合差分隐私与同态加密等技术强化安全性。同时,系统通过Vue前端实现用户行为采集与个性化推荐展示,Java后端支撑高并发服务与日志处理,形成“本地训练—参数上传—全局聚合—模型下发—个性化微调”的完整闭环。文中还提供了关键模块的代码示例,如特征提取、模型聚合、加密上传等,增强了项目的可实施性与工程参考价值。 适合人群:具备一定Java和Vue开发基础,熟悉Spring Boot、RESTful API、分布式系统或机器学习相关技术,从事推荐系统、隐私计算或全栈开发方向的研发人员。 使用场景及目标:①学习联邦学习在推荐系统中的工程落地方法;②掌握隐私保护机制(如加密传输、差分隐私)与模型聚合技术的集成;③构建高安全、可扩展的分布式推荐系统原型;④实现前后端协同的个性化推荐闭环系统。 阅读建议:建议结合代码示例深入理解联邦学习流程,重点关注本地训练与全局聚合的协同逻辑,同时可基于项目架构进行算法替换与功能扩展,适用于科研验证与工业级系统原型开发。
源码来自:https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
回答: 最长回文子串可以通过两种方法来实现。第一种是使用中心扩展法,代码如下: ```python class Solution: def check(self, s, l, r): while l >= 0 and r < len(s) and s[l == s[r]: l -= 1 r += 1 return l + 1, r - 1 def longestPalindrome(self, s: str) -> str: start, end = 0, 0 for x in range(len(s)): l1, r1 = self.check(s, x, x) l2, r2 = self.check(s, x, x + 1) if r1 - l1 > end - start: start, end = l1, r1 if r2 - l2 > end - start: start, end = l2, r2 return s[start:end+1] ``` 第二种方法是使用动态规划,代码如下: ```python class Solution: def longestPalindrome(self, s: str) -> str: res = '' for i in range(len(s)): start = max(0, i - len(res) - 1) temp = s[start:i+1] if temp == temp[::-1]: res = temp else: temp = temp<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [5. 最长回文子串(Python 实现)](https://blog.csdn.net/d_l_w_d_l_w/article/details/118861851)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [LeetCode(Python3)5.最长回文子串](https://blog.csdn.net/weixin_52593484/article/details/124718655)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [力扣 (LeetCode)刷题笔记5.最长回文子串 python](https://blog.csdn.net/qq_44672855/article/details/115339324)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值