Functions again

本文介绍了一个关于序列处理的问题,即通过计算序列中相邻元素的差的绝对值来构造新的序列,并从中选出一段使特定组合的和达到最大值的方法。文章提供了完整的代码实现,采用动态规划策略解决该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

Something happened in Uzhlyandia again... There are riots on the streets... Famous Uzhlyandian superheroes Shean the Sheep and Stas the Giraffe were called in order to save the situation. Upon the arriving, they found that citizens are worried about maximum values of the Main Uzhlyandian Function f, which is defined as follows:

In the above formula, 1 ≤ l < r ≤ n must hold, where n is the size of the Main Uzhlyandian Array a, and |x|means absolute value of x. But the heroes skipped their math lessons in school, so they asked you for help. Help them calculate the maximum value of f among all possible values of l and r for the given array a.

Input

The first line contains single integer n (2 ≤ n ≤ 105) — the size of the array a.

The second line contains n integers a1, a2, ..., an (-109 ≤ ai ≤ 109) — the array elements.

Output

Print the only integer — the maximum value of f.

Examples

Input

5
1 4 2 3 1

Output

3

Input

4
1 5 4 7

Output

6

Note

In the first sample case, the optimal value of f is reached on intervals [1, 2] and [2, 5].

In the second case maximal value of f is reachable only on the whole array.

 

题意:

题意就是给一个序列,然后另一个序列等于这个序列相邻两个数两两之差的绝对值。你可以在第二个序列中随意选取一段,规定这段第一个数是正数,第二个数是负数,求出这一段的和,你要选取一段和最大的,输出最大值。

 

思路:

和求序列的最大子段和相似,

先把序列相邻两个数两两之差的绝对值算出来存下来,然后利用dp计算;

 

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,a[100010];
long long sum[100010];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<n;i++)
        sum[i]=abs(a[i]-a[i+1]);
    long long maxx=0,num=0,k=1,t=0;
    for(int i=1;i<n;i++)
    {
        if(t%2==0)
        {
            t++;
            num=num+sum[i];
        }
        else
        {
            t++;
            num=num-sum[i];
        }
        if(num>maxx)
            maxx=num;
        if(num<0)
        {
            num=0;
            t=0;
            i=k++;
        }
    }
    printf("%lld\n",maxx);
    return 0;
}

 

### STM32H750 Flash Operation Timeout Reset Solution For the STM32H750, when encountering a flash operation timeout leading to resets during programming or erase operations on the internal flash memory, several factors and solutions can be considered. The issue of timeouts often arises from incorrect configuration settings related to wait states for the flash access. The number of wait states must match the system clock frequency; otherwise, this mismatch may cause read/write failures that lead to time-outs[^1]. To address these issues: #### Adjusting Wait States Configuration Ensure proper adjustment of FLASH_ACR register values which control parameters like latency (wait states). For higher frequencies, more wait states are required to prevent timing violations within the flash memory interface. ```c // Example C code snippet adjusting FLASH ACR Register FLASH->ACR &= ~(FLASH_ACR_LATENCY_Msk); FLASH->ACR |= FLASH_ACR_LATENCY_7WS; ``` #### Disabling Prefetch Buffer Temporarily During Operations Disabling prefetch buffer temporarily while performing critical flash operations might help avoid potential conflicts between instruction fetches and data accesses occurring simultaneously over the same bus lines used by both CPU instructions execution pipeline as well as direct RAM/Flash transactions initiated through HAL functions calls. ```c // Disable Prefetch Buffer before Flash Operation HAL_FLASH_Unlock(); __HAL_FLASH_INSTRUCTION_CACHE_DISABLE(); __HAL_FLASH_DATA_CACHE_DISABLE(); // Perform your flash operation here... // Re-enable after completion __HAL_FLASH_INSTRUCTION_CACHE_ENABLE(); __HAL_FLASH_DATA_CACHE_ENABLE(); HAL_FLASH_Lock(); ``` #### Increasing Timeouts in Code Increasing software-imposed delays or loop counters inside drivers responsible for managing low-level hardware interactions with non-volatile storage components could give enough margin against race conditions causing premature terminations due to perceived stalls at runtime level without actual faults present physically inside silicon itself. By implementing above adjustments carefully based upon specific application requirements alongside thorough testing across different operating scenarios including temperature variations affecting electrical characteristics significantly one should achieve stable performance free from unexpected interruptions caused by improper handling of embedded systems' persistent memories interfaces. --related questions-- 1. What other common problems occur with STM32H7 series microcontrollers? 2. How does changing the number of wait states impact overall system performance? 3. Can disabling the prefetch buffer affect program execution speed negatively? 4. Are there any best practices for writing robust flash driver implementations? 5. In what ways do environmental factors influence microcontroller behavior?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值