最左边的数
Problem:66 Time Limit:1000ms Memory Limit:65536K
Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.Sample Input
2
3
4
Sample Output
22
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
Source
思路:设n^n=d.xxx*10^(k-1),其中k为n^n的位数,所以k=(int)nlgn+1;
所以d.xxx=n^n / 10^(k-1),分子可以转化为 10^lg(n^n);
即d.xxx=10^nlgn / 10^(k-1)=10^[nlgn-(k-1)]=10^[nlgn-(int)nlgn]=pow(10,nlgn-(int)nlgn);
最后取整,得d=(int)pow(10,nlgn-(int)nlgn)。
代码:
// 时隔好几个月,再来一发,以后要多写博客啊!!
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int d,t,i;
long long n;
while(cin>>t)
{
for(i=1;i<=t;i++)
{
cin>>n;
d=(int)(pow(10,(n*log10(n)-(int)(n*log10(n)))));
cout<<d<<endl;
}
}
return 0;
}