Cost Function - Intuition I

这篇博客探讨了在机器学习中如何通过最小化平均平方误差来找到最佳的直线模型。内容展示了当θ1=1时,直线能完美通过所有数据点,使得成本函数J(θ0,θ1)为0。而当θ1=0.5时,数据点到直线的垂直距离增大,成本函数增加到0.58。因此,目标是找到使成本函数最小化的θ1值,即全局最小值。

If we try to think of it in visual terms, our training data set is scattered on the x-y plane. We are trying to make a straight line (defined by hθ(x)h_\theta(x)hθ(x) which passes through these scattered data points.

Our objective is to get the best possible line. The best possible line will be such so that the average squared vertical distances of the scattered points from the line will be the least. Ideally, the line should pass through all the points of our training data set. In such a case, the value of J(θ0,θ1)J(\theta_0, \theta_1)J(θ0,θ1) will be 0. The following example shows the ideal situation where we have a cost function of 0.

在这里插入图片描述

When θ1=1\theta_1 = 1θ1=1, we get a slope of 1 which goes through every single data point in our model. Conversely, when θ1=0.5\theta_1 = 0.5θ1=0.5, we see the vertical distance from our fit to the data points increase.
在这里插入图片描述

This increases our cost function to 0.58. Plotting several other points yields to the following graph:

在这里插入图片描述

Thus as a goal, we should try to minimize the cost function. In this case, θ1=1\theta_1 = 1θ1=1 is our global minimum.

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值