Cost Function

本文介绍了如何通过平方误差函数(均方误差)衡量假设函数准确性,重点讲解了J(θ0,θ1)的计算公式,并阐述了它在预测值与实际值差异中的作用。此外,我们讨论了平方误差函数在梯度下降算法中的便利性,以及其在机器学习中的广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集分布

We can measure the accuracy of our hypothesis function by using a cost function. This takes an average difference (actually a fancier version of an average) of all the results of the hypothesis with inputs from x’s and the actual output y’s.

J(θ0,θ1)=12m∑i=1m(y^i−yi)2=12m∑i=1m(hθ(xi)−yi)2J(\theta_0, \theta_1)= \dfrac {1}{2m} \displaystyle \sum _{i=1}^m \left ( \hat{y}_{i}- y_{i} \right)^2 = \dfrac {1}{2m} \displaystyle \sum _{i=1}^m \left (h_\theta (x_{i}) - y_{i} \right)^2J(θ0,θ1)=2m1i=1m(y^iyi)2=2m1i=1m(hθ(xi)yi)2

To break it apart, it is 12xˉ\frac{1}{2} \bar{x}21xˉ where $ \bar{x}$ is the mean of the squares of hθ(xi)−yih_\theta (x_{i}) - y_{i}hθ(xi)yi , or the difference between the predicted value and the actual value.

This function is otherwise called the “Squared error function”-平方误差函数, or “Mean squared error”-均方误差. The mean is halved (12)\left(\frac{1}{2}\right)(21) as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the 12\frac{1}{2}21 term. The following image summarizes what the cost function does:

平方差函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值