Power Strings
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 38455 | Accepted: 15966 |
Description
Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).
Input
Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.
Output
For each s you should print the largest n such that s = a^n for some string a.
Sample Input
abcd aaaa ababab .
Sample Output
1 4 3
Hint
This problem has huge input, use scanf instead of cin to avoid time limit exceed.
首先,这一题的正解应该是KMP,然而用后缀数组也是能做的,但是有卡nlogn
通过这一题再一次明确了几个地方
1.刘汝佳白书上的后缀数组求height[]是错的
2.输入一个字符串,应该在其末尾补上一个0
3.rank1[0~n-1]都是大于等于1的
4.通过这道题目也初步了解了如果用RMQ维护所有点到固定一点的最大LCS
5. suffix(1)和 suffix(k+1)的最长公共前缀是否等于 n-k。(k表示为长度)如果知道这一点便可以说明这个字符串可以由若干个循环节构成
首先,这一题的正解应该是KMP,然而用后缀数组也是能做的,但是有卡nlogn
通过这一题再一次明确了几个地方
1.刘汝佳白书上的后缀数组求height[]是错的
2.输入一个字符串,应该在其末尾补上一个0
3.rank1[0~n-1]都是大于等于1的
4.通过这道题目也初步了解了如果用RMQ维护所有点到固定一点的最大LCS
5. suffix(1)和 suffix(k+1)的最长公共前缀是否等于 n-k。(k表示为长度)如果知道这一点便可以说明这个字符串可以由若干个循环节构成
#include<stdio.h>
#include<cstring>
#include <cstdlib>
#include<algorithm>
using namespace std;
const int maxn=3000010;
int ws[maxn],wa[maxn],wb[maxn],wv[maxn],sa[maxn],rank1[maxn],height[maxn],a[maxn],f[maxn];
char s[maxn];
//dc3
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
int c0(int *r,int a,int b)
{
return r[a]==r[b]&&r[a+1]==r[b+1]&&r[a+2]==r[b+2];
}
int c12(int k,int *r,int a,int b)
{
if(k==2) return r[a]<r[b]||r[a]==r[b]&&c12(1,r,a+1,b+1);
else return r[a]<r[b]||r[a]==r[b]&&wv[a+1]<wv[b+1];
}
void sort(int *r,int *a,int *b,int n,int m)
{
int i;
for(i=0; i<n; i++) wv[i]=r[a[i]];
for(i=0; i<m; i++) ws[i]=0;
for(i=0; i<n; i++) ws[wv[i]]++;
for(i=1; i<m; i++) ws[i]+=ws[i-1];
for(i=n-1; i>=0; i--) b[--ws[wv[i]]]=a[i];
return;
}
void dc3(int *r,int *sa,int n,int m)
{
int i,j,*rn=r+n,*san=sa+n,ta=0,tb=(n+1)/3,tbc=0,p;
r[n]=r[n+1]=0;
for(i=0; i<n; i++) if(i%3!=0) wa[tbc++]=i;
sort(r+2,wa,wb,tbc,m);
sort(r+1,wb,wa,tbc,m);
sort(r,wa,wb,tbc,m);
for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++)
rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++;
if(p<tbc) dc3(rn,san,tbc,p);
else for(i=0; i<tbc; i++) san[rn[i]]=i;
for(i=0; i<tbc; i++) if(san[i]<tb) wb[ta++]=san[i]*3;
if(n%3==1) wb[ta++]=n-1;
sort(r,wb,wa,ta,m);
for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i;
for(i=0,j=0,p=0; i<ta && j<tbc; p++)
sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++];
for(; i<ta; p++) sa[p]=wa[i++];
for(; j<tbc; p++) sa[p]=wb[j++];
return;
}
void getHeight(int n){
int i,j,k=0;
for(i=0;i<=n;i++) rank1[sa[i]]=i;
for(i=0;i<n;i++){
if(k) k--;
int j=sa[rank1[i]-1];
while(s[i+k]==s[j+k]) k++;
height[rank1[i]]=k;
}
}
void st(int n){
int j=rank1[0];
int minv=n;
for(int i=j;i>=1;i--){ //rank1值,自己和自己的长度为n
f[i]=minv; //排名为0的f[0]始终为0
minv=min(minv,height[i]);
}
minv=n;
for(int i=j+1;i<=n;i++){
minv=min(minv,height[i]);
f[i]=minv;
}
}
int main(){
while(scanf("%s",s)!=EOF){
if(s[0]=='.')
break;
int n=strlen(s);
for (int i=0; i<n; i++) a[i]=static_cast<int>(s[i]);
a[n]=0;
dc3(a,sa,n+1,123);
getHeight(n);
st(n);
/*for(int i=0;i<n;i++){ //rank1[0~n-1]对应于1~n
printf("rank[%d] is %d\n",i,rank1[i]);
printf("%d\n",height[rank1[i]]);
}*/
int ans;
for(int i=1;i<=n;i++){ //表示长度,等于n是保证结果为1的情况
if(n%i==0&&f[rank1[i]]==n-i){ //不从0开始是因为f[rank1[0]]=n,不可能成立
ans=n/i;
break;
}
}
printf("%d\n",ans);
}
return 0;
}