POJ - 2253 Frogger

本文介绍了一个经典的图论问题——青蛙跳石问题,该问题要求计算两只青蛙之间的最小跳跃距离,即所谓的青蛙距离。通过使用Dijkstra算法,文章详细阐述了如何找到从一只青蛙所在的石头到另一只青蛙所在石头的路径上最大的跳跃距离,并给出了解决方案的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists’ sunscreen, he wants to avoid swimming and instead reach her by jumping.
Unfortunately Fiona’s stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog’s jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy’s stone, Fiona’s stone and all other stones in the lake. Your job is to compute the frog distance between Freddy’s and Fiona’s stone.
Input
The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy’s stone, stone #2 is Fiona’s stone, the other n-2 stones are unoccupied. There’s a blank line following each test case. Input is terminated by a value of zero (0) for n.
Output
For each test case, print a line saying “Scenario #x” and a line saying “Frog Distance = y” where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
Sample Input
2
0 0
3 4

3
17 4
19 4
18 5

0
Sample Output
Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414

题意大概一个青蛙在第一个点,还要有一个在第二个点,还有n-2个石头,找出第一个青蛙到第二个青蛙最短路径中最大的一次跳跃距离。
这和求最大负载刚好反过来,不过都是将d[i]的意义变一下就可以了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define inf 0x3f3f3f3f

using namespace std;

int n;
double d[210];
double w[210][210];
int vis[210];

struct node
{
    int x,y;
}p[210];

void dijkstra()
{
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
    {
        d[i]=w[1][i];
    }
    int a=1;
    for(int k=1;k<=n;k++)
    {
        double min1=inf;
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&d[i]<min1)
            {
                a=i;
                min1=d[i];
            }
        }
        vis[a]=1;
        if(a==2)break;
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&d[i]>max(d[a],w[a][i]))//找最大的一次跳跃距离
            {
                d[i]=max(d[a],w[a][i]);
            }
        }
    }
}

int main()
{
    int t=1;
    while(scanf("%d",&n)!=EOF&&n)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(i==j)
                {
                    w[i][j]=0;
                }
                else
                {
                    w[i][j]=inf;
                }
            }
        }
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&p[i].x,&p[i].y);
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=i;j<=n;j++)
            {
                double x1=p[i].x-p[j].x;
                double y1=p[i].y-p[j].y;
                double c=sqrt(x1*x1+y1*y1);
                if(w[i][j]>c)
                {
                    w[i][j]=w[j][i]=c;
                }
            }
        }
        dijkstra();
        printf("Scenario #%d\n",t++);
        printf("Frog Distance = %.3f\n\n",d[2]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值