POJ - 3268 Silver Cow Party

本文解决了一个有趣的问题:如何计算一群牛从各自的农场出发参加聚会再返回所需的最长总时间。通过两次使用Dijkstra算法来确定每头牛到达聚会地点及返回的最短路径。

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow’s return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input
Line 1: Three space-separated integers, respectively: N, M, and X
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Line 1: One integer: the maximum of time any one cow must walk.
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint
Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
给定一些边和距离且是单向的,然后N头牛,所有的按照最短路走到X处,并用最短路返回,问这些牛中所有路线里最大值是多少。写两个dijkstra,分别计算i到x的最短路,x到i的最短路。最后在枚举一下就可以了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define inf 1<<29

using namespace std;
int n,m,x;
int w[1010][1010];
int d1[1010],d2[1010];
int vis[1010];

void dijkstra1()//x到i的最短路
{
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
    {
        d1[i]=w[x][i];
    }
    for(int k=1;k<=n;k++)
    {
        int a,min1=inf;
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&min1>d1[i])
            {
                a=i;
                min1=d1[i];
            }
        }
        vis[a]=1;
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&w[a][i]+d1[a]<d1[i])
            {
                d1[i]=d1[a]+w[a][i];
            }
        }
    }
}
void dijkstra2()//i到x的最短路
{
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
    {
        d2[i]=w[i][x];
    }
    for(int k=1;k<=n;k++)
    {
        int a,min1=inf;
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&min1>d2[i])
            {
                a=i;
                min1=d2[i];
            }
        }
        vis[a]=1;
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&w[i][a]+d2[a]<d2[i])
            {
                d2[i]=d2[a]+w[i][a];
            }
        }
    }
}

int main()
{
    while(scanf("%d%d%d",&n,&m,&x)==3)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(i==j)
                {
                    w[i][j]=0;
                }
                else
                {
                    w[i][j]=inf;
                }
            }
        }
        int a,b,c;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            w[a][b]=c;
        }
        dijkstra1();
        dijkstra2();
        int sum=-1;
        for(int i=1;i<=n;i++)
        {
            if(sum<d1[i]+d2[i])
            {
                sum=d1[i]+d2[i];
            }
        }
        printf("%d\n",sum);
    }
    return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值