N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5
4 3
4 2
3 2
1 2
2 5
Sample Output
2
有n头牛比赛,m种比赛结果,求一共有多少头牛的排名被确定了,其中如果a战胜b,b战胜c,则也可以说a战胜c,即可以传递胜负。
之前只知道Floyd是求最短路的,百度一下还可以求传递闭包的问题。
一头牛的排名被确定就是根据它可以知道其他n-1头牛赢了这头牛或输给这头牛,即一个顶点的出度与入度 相加=顶点数-1,就可以确定这个顶点的排名了
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,m;
int w[110][110];
void floyd()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(w[i][k]&&w[k][j])
{
w[i][j]=1;//用floyd扩展关系
}
}
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
int a,b;
memset(w,0,sizeof(w));//初始化
for(int i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
w[a][b]=1;
}
floyd();
int sum=0;
for(int i=1;i<=n;i++)
{
int ans=0;
for(int j=1;j<=n;j++)
{
if(i!=j)
{
if(w[i][j]||w[j][i])
{
ans++;//出度入度和
}
}
}
if(ans==n-1)
{
sum++;
}
}
printf("%d\n",sum);
}
return 0;
}
本文介绍了一种通过比赛结果确定牛的技能排名的算法。利用Floyd算法扩展关系矩阵,实现对比赛胜负传递性的计算,进而确定每头牛的排名是否能够被确切地决定。
281

被折叠的 条评论
为什么被折叠?



