Route Redundancy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 631 Accepted Submission(s): 368
Problem Description
A city is made up exclusively of one-way steets.each street in the city has a capacity,which is the minimum of the capcities of the streets along that route.
The redundancy ratio from point A to point B is the ratio of the maximum number of cars that can get from point A to point B in an hour using all routes simultaneously,to the maximum number of cars thar can get from point A to point B in an hour using one route.The minimum redundancy ratio is the number of capacity of the single route with the laegest capacity.
The redundancy ratio from point A to point B is the ratio of the maximum number of cars that can get from point A to point B in an hour using all routes simultaneously,to the maximum number of cars thar can get from point A to point B in an hour using one route.The minimum redundancy ratio is the number of capacity of the single route with the laegest capacity.
Input
The first line of input contains asingle integer P,(1<=P<=1000),which is the number of data sets that follow.Each data set consists of several lines and represents a directed graph with positive integer weights.
The first line of each data set contains five apace separatde integers.The first integer,D is the data set number. The second integer,N(2<=N<=1000),is the number of nodes inthe graph. The thied integer,E,(E>=1),is the number of edges in the graph. The fourth integer,A,(0<=A<N),is the index of point A.The fifth integer,B,(o<=B<N,A!=B),is the index of point B.
The remaining E lines desceibe each edge. Each line contains three space separated in tegers.The First integer,U(0<=U<N),is the index of node U. The second integer,V(0<=v<N,V!=U),is the node V.The third integer,W (1<=W<=1000),is th capacity (weight) of path from U to V.
The first line of each data set contains five apace separatde integers.The first integer,D is the data set number. The second integer,N(2<=N<=1000),is the number of nodes inthe graph. The thied integer,E,(E>=1),is the number of edges in the graph. The fourth integer,A,(0<=A<N),is the index of point A.The fifth integer,B,(o<=B<N,A!=B),is the index of point B.
The remaining E lines desceibe each edge. Each line contains three space separated in tegers.The First integer,U(0<=U<N),is the index of node U. The second integer,V(0<=v<N,V!=U),is the node V.The third integer,W (1<=W<=1000),is th capacity (weight) of path from U to V.
Output
For each data set there is one line of output.It contains the date set number(N) follow by a single space, followed by a floating-point value which is the minimum redundancy ratio to 3 digits after the decimal point.
Sample Input
1 1 7 11 0 6 0 1 3 0 3 3 1 2 4 2 0 3 2 3 1 2 4 2 3 4 2 3 5 6 4 1 1 4 6 1 5 6 9
Sample Output
1 1.667
Source
题意:给t,n,m,a,b,t是样例累加器,n代表有0~n-1的点,m是边(单向),a是起点b是终点,求最大流/起点到终点的路径中流量最大的路径的流量
思路:最大流直接求,可是起点到终点的路径中流量最大的路径的流量如何求呢? 这里参考了这位大神的博客。
用dfs进行一次所有起点到终点的路径的遍历,找出其中最小的容量是所有路径中最大的那一个容量即可
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define N 2050
#define INF 99999999
struct Edge
{
int v,next,cap;
} edge[N*N];
int cnt,head[N],d[N],vis[N];
int num;
void init()
{
memset(head,-1,sizeof(head));
cnt=0;
}
void addedge(int u,int v,int cap)
{
edge[cnt].v=v,edge[cnt].cap=cap;
edge[cnt].next=head[u],head[u]=cnt++;
edge[cnt].v=u,edge[cnt].cap=0;
edge[cnt].next=head[v],head[v]=cnt++;
}
int bfs(int s,int t)
{
memset(d,-1,sizeof(d));
d[s]=0;
queue<int>q;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v,cap=edge[i].cap;
if(d[v]==-1&&cap>0)
{
d[v]=d[u]+1;
q.push(v);
}
}
}
return d[t]!=-1;
}
int dfs(int s,int t,int f)
{
if(s==t||f==0) return f;
int flow=0;
for(int i=head[s]; i!=-1; i=edge[i].next)
{
int v=edge[i].v,cap=edge[i].cap;
if(d[v]==d[s]+1&&cap>0)
{
int x=min(f-flow,cap);
x=dfs(v,t,x);
flow+=x;
edge[i].cap-=x;
edge[i^1].cap+=x;
}
}
if(!flow) d[s]=-2;
return flow;
}
int Dinic(int s,int t)
{
int flow=0,f;
while(bfs(s,t))
{
while(f=dfs(s,t,INF))
flow+=f;
}
return flow;
}
void get_dfs(int u,int f,int t)
{
if(f<num) return;
if(u==t)
{
num=max(num,f);
return;
}
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(!vis[v])
{
vis[v]=1;
get_dfs(v,min(f,edge[i].cap),t);
vis[v]=0;
}
}
}
int main()
{
int T,t,n,m,a,b;
int u,v,w;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d %d %d %d %d",&t,&n,&m,&a,&b);
while(m--)
{
scanf("%d %d %d",&u,&v,&w);
addedge(u,v,w);
}
num=0;
memset(vis,0,sizeof(vis));
vis[a]=1;
get_dfs(a,INF,b);
int ans=Dinic(a,b);
double aa=ans*1.0/num;
printf("%d %.3lf\n",t,aa);
}
return 0;
}