hdu 4183 Pahom on Water(最大流)

本文介绍了一个基于Leo Tolstoy故事的游戏PahomonWater,玩家需引导角色走过一系列彩色垫子,从红色到紫色再返回。文章详细阐述了游戏规则及编程实现方法,通过构建图模型并运用Dinic算法验证是否存在有效路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pahom on Water

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 969    Accepted Submission(s): 441


Problem Description
Pahom on Water is an interactive computer game inspired by a short story of Leo Tolstoy about a poor man who, in his lust for land, forfeits everything. The game's starting screen displays a number of circular pads painted with colours from the visible light spectrum. More than one pad may be painted with the same colour (defined by a certain frequency) except for the two colours red and violet. The display contains only one red pad (the lowest frequency of 400 THz) and one violet pad (the highest frequency of 789 THz). A pad may intersect, or even contain another pad with a different colour but never merely touch its boundary. The display also shows a figure representing Pahom standing on the red pad.
The game's objective is to walk the figure of Pahom from the red pad to the violet pad and return back to the red pad. The walk must observe the following rules:
1.If pad α and pad β have a common intersection and the frequency of the colour of pad α is strictly smaller than the frequency of the colour of pad β, then Pahom figure can walk from α to β during the walk from the red pad to the violet pad
2. If pad α and pad β have a common intersection and the frequency of the colour of pad α is strictly greater than the frequency of the colour of pad β, then Pahom figure can walk from α to β during the walk from the violet pad to the red pad
3. A coloured pad, with the exception of the red pad, disappears from display when the Pahom figure walks away from it.
The developer of the game has programmed all the whizzbang features of the game. All that is left is to ensure that Pahom has a chance to succeed in each instance of the game (that is, there is at least one valid walk from the red pad to the violet pad and then back again to the red pad.) Your task is to write a program to check whether at least one valid path exists in each instance of the game.
 

Input
The input starts with an integer K (1 <= K <= 50) indicating the number of scenarios on a line by itself. The description for each scenario starts with an integer N (2 <= N <= 300) indicating the number of pads, on a line by itself, followed by N lines that describe the colors, locations and sizes of the N pads. Each line contains the frequency, followed by the x- and y-coordinates of the pad's center and then the radius. The frequency is given as a real value with no more than three decimal places. The coordinates and radius are given, in meters, as integers. All values are separated by a single space. All integer values are in the range of -10,000 to 10,000 inclusive. In each scenario, all frequencies are in the range of 400.0 to 789.0 inclusive. Exactly one pad will have a frequency of “400.0” and exactly one pad will have a frequency of “789.0”.
 

Output
The output for each scenario consists of a single line that contains: Game is VALID, or Game is NOT VALID
 

Sample Input
  
2 2 400.0 0 0 4 789.0 7 0 2 4 400.0 0 0 4 789.0 7 0 2 500.35 5 0 2 500.32 5 0 3
 

Sample Output
  
Game is NOT VALID Game is VALID
 

Source
题意:坐标轴上有很多个圈,现在问能不能从最小的圈走到最大的圈再从最大的圈走回来,不能经过走过的圈

圈给出坐标和半径,相交的圈才能走过去,不会有圈相切的情况

思路 :把所有从小到大能走到的边连接,判断从最小的走到最大的能不能至少有两种方式(也就是最大流>=2)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define N 1000
#define INF 99999999
struct Node
{
    double v;
    int x,y,r;
} a[N];
struct Edge
{
    int v,next,cap;
} edge[N*N];
int cnt,head[N],d[N];
void init()
{
    memset(head,-1,sizeof(head));
    cnt=0;
}
void addedge(int u,int v,int cap)
{
    edge[cnt].v=v,edge[cnt].cap=cap;
    edge[cnt].next=head[u],head[u]=cnt++;
    edge[cnt].v=u,edge[cnt].cap=0;
    edge[cnt].next=head[v],head[v]=cnt++;
}
int bfs(int s,int t)
{
    memset(d,-1,sizeof(d));
    d[s]=0;
    queue<int>q;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u]; i!=-1; i=edge[i].next)
        {
            int v=edge[i].v,cap=edge[i].cap;
            if(d[v]==-1&&cap>0)
            {
                d[v]=d[u]+1;
                q.push(v);
            }
        }
    }
    return d[t]!=-1;
}
int dfs(int s,int t,int f)
{
    if(s==t||f==0) return f;
    int flow=0;
    for(int i=head[s]; i!=-1; i=edge[i].next)
    {
        int v=edge[i].v,cap=edge[i].cap;
        if(d[v]==d[s]+1&&cap>0)
        {
            int x=min(f-flow,cap);
            x=dfs(v,t,x);
            flow+=x;
            edge[i].cap-=x;
            edge[i^1].cap+=x;
        }
    }
    if(!flow) d[s]=-2;
    return flow;
}
int Dinic(int s,int t)
{
    int flow=0,f;
    while(bfs(s,t))
    {
        while(f=dfs(s,t,INF))
            flow+=f;
    }
    return flow;
}
int judge(Node a,Node b)
{
    long long dist=(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
    long long r=(a.r+b.r)*(a.r+b.r);
    return dist<r;
}
bool cmp(Node a,Node b)
{
    return a.v<b.v;
}
int main()
{
    int T,n;
    scanf("%d",&T);
    while(T--)
    {
        init();
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            scanf("%lf %d %d %d",&a[i].v,&a[i].x,&a[i].y,&a[i].r);
        sort(a+1,a+1+n,cmp);
        for(int i=1; i<=n; i++)
            for(int j=i+1; j<=n; j++)
                if(judge(a[i],a[j]))
                        addedge(i,j,1);
        if(Dinic(1,n)>=2) printf("Game is VALID\n");
        else printf("Game is NOT VALID\n");
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值