欧拉函数

欧拉定理
如果两个正整数a和n互质,则n的欧拉函数 φ(n) 可以让下面的等式成立:

aφ(n)=1(modn);

如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。

这时,b就叫做a的“模反元素”。

a的 φ(n)-1 次方,就是a的模反元素

欧拉函数

  

//求单个数字的欧拉函数,复杂度为O(√n);
int Dir(int x) {
    int res = x;
    for(int i = 2; i * i <= x; i ++) {
        if(x % i == 0) {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    }
    if (x > 1) res = res / x * (x - 1);
    return res;
}


//递推打表求欧拉函数,复杂度O(n*Log(n))
LLI Euler[maxn];
void Recursive(LLI n)
{
//    Euler[0] = 0;
    for (int i = 1; i <= n; i ++)    Euler[i] = i;
    for (int i = 2; i <= n; i += 2)  Euler[i] /= 2;
    for (int i = 3; i <= n; i += 2)
        if(Euler[i] == i)
            for (int j = i; j <= n; j += i)
                Euler[j] = Euler[j] / i * (i - 1);
}
//另一种方法求欧拉函数,复杂度O(n)
bool isPrime[maxn];
LLI primeList[maxn],phi[maxn],primeCount = 0;
void Recursive(LLI n) {
    memset(isPrime,true,sizeof(isPrime));
    for(LLI i = 2; i <= n; i ++) {
        if(isPrime[i]) {
            primeCount ++;
            primeList[primeCount] = i;
            phi[i] = i - 1;
        }
        for(LLI j = 1; j <= primeCount; j ++) {
            if(i * primeList[j] > n)    break;
            isPrime[i * primeList[j]] = false;
            if(i % primeList[j] == 0) {
                phi[i * primeList[j]] = phi[i] * primeList[j];
                break;
            } else    
				phi[i * primeList[j]] = phi[i] * (primeList[j] - 1);
        }
    }
}


<think>好的,我需要帮助用户了解欧拉函数的算法实现。首先,我要回顾一下欧拉函数的定义。根据引用[2][3],欧拉函数φ(n)是小于n的正整数中与n互质的数的数目。例如φ(8)=4,因为1,3,5,78互质。 接下来,用户想知道如何实现欧拉函数的算法。根据引用[3],欧拉函数的通式是φ(n) = n × Π(1 - 1/p),其中p是n的所有不同的质因数。所以,实现这个函数的关键步骤应该是分解质因数,然后应用这个公式。 首先,分解质因数。我需要找出n的所有不同质因数。例如,对于n=12,质因数是23,所以φ(12)=12×(1-1/2)×(1-1/3)=4。这一步可以通过试除法来实现,从2开始逐个试除,直到平方根为止。 然后,应用公式。每找到一个质因数p,就乘上(1-1/p),最后乘以n。需要注意的是,如果n最后剩下一个大于1的质数,也需要处理。 现在考虑代码实现。用户提供的引用[1]提到使用BigIntegers处理非常大的数字,但用户现在可能需要一个基础的实现方法。假设用户使用Python,可以写一个函数,首先分解质因数,然后计算结果。 需要注意的几个点:1. 处理n=1的情况,φ(1)=1。2. 在分解质因数时,避免重复因数,所以每次找到一个质因数后,要彻底除去所有该因数。例如,分解12时,先除以2得到3,再除以3,得到1,这样就不会重复计算因数2。 测试一下例子是否正确。例如,φ(8)=4,φ(12)=4,φ(7)=6(质数的情况)。代码是否能正确处理这些情况? 另外,引用[1]提到了对大数的处理,可能需要更高效的质因数分解方法,比如Pollard's Rho算法,但对于一般情况,试除法可能足够,尤其是当n不是特别大的时候。不过,试除法对于大数来说效率不高,这时候需要考虑优化算法,但用户可能先需要一个基础实现。 可能的错误点:在分解质因数时,忘记处理剩余的n可能也是质数的情况。比如,n=13,分解到最后的n=13,应该被算作一个质因数。 现在,把这些步骤整理成代码。编写一个函数euler_phi(n),返回φ(n)的值。首先处理n=0或1的特殊情况。然后对n进行质因数分解,记录所有不同的质因数,然后应用公式。 最后,生成相关问题。根据欧拉函数应用,比如欧拉定理,或者优化算法的方法,或者比较不同分解质因数的方法的效率等。 总结,我需要给出欧拉函数的定义、算法步骤、代码实现以及相关问题。</think>### 欧拉函数算法实现 #### 1. 定义与公式 欧拉函数 $φ(n)$ 定义为**小于 $n$ 且与 $n$ 互质正整数的个数**。其通式为: $$ φ(n) = n \cdot \prod_{p \mid n} \left(1 - \frac{1}{p}\right) $$ 其中 $p$ 是 $n$ 的质因数[^3]。 #### 2. 算法步骤 1. **质因数分解**:将 $n$ 分解为不同质因数的乘积。 2. **应用公式**:遍历每个质因数 $p$,计算 $\prod \left(1 - \frac{1}{p}\right)$,最后乘以 $n$。 #### 3. 代码实现(Python) ```python def euler_phi(n): if n <= 0: return 0 result = n # 质因数分解 p = 2 while p * p <= n: if n % p == 0: while n % p == 0: n //= p result -= result // p # 等价于 result *= (1 - 1/p) p += 1 # 处理剩余的质因数(如n是质数的情况) if n > 1: result -= result // n return result ``` #### 示例验证 - **输入:8** 质因数为 2,计算过程:$8 \cdot (1 - 1/2) = 4$,输出为 4。 - **输入:7** 7 是质数,计算过程:$7 \cdot (1 - 1/7) = 6$,输出为 6[^2]。 #### 4. 优化方向 - **大数处理**:使用 Pollard's Rho 算法加速质因数分解[^1]。 - **预计算质数表**:用筛法预存质数,减少试除次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值