To The Max
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5793 Accepted Submission(s): 2735
Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
is in the lower left corner:
9 2 -4 1 -1 8
and has a sum of 15.
Input The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output Output the sum of the maximal sub-rectangle.

1 /* 2 最大子矩阵和 3 其实就相当于最大子段和+枚举。把所有子矩阵都枚举了一遍。时间复杂度O(n^3)。 4 假定最大子矩阵从第i~j行,第k~g列,则每一列加起来成为一个数,最后直接求 5 最大子段和。枚举是从第1~n行,然后是第2~n行... 6 7 0MS 272K 8 */ 9 10 #include <iostream> 11 #include <cstdio> 12 #include <cstring> 13 #include <algorithm> 14 #define SIZE 105 15 16 using namespace std; 17 18 int temp[SIZE]; 19 int map[SIZE][SIZE]; 20 int n; 21 22 int MaxArray() 23 { 24 int sum = 0,maxi = 0; 25 for(int i=1; i<=n; i++) 26 { 27 if(sum > 0) 28 sum += temp[i]; 29 else 30 sum = temp[i]; 31 if(maxi < sum) 32 maxi = sum; 33 } 34 return maxi; 35 } 36 37 int MaxMatrix() 38 { 39 int sum = 0; 40 int maxi = -0xfffffff; 41 for(int i=1; i<=n; i++) //第一行开始枚举 42 { 43 for(int j=1; j<=n; j++) //每次初始化temp,存储的是每一列的和 44 temp[j] = 0; 45 for(int j=i; j<=n; j++) //枚举第i~n行 46 { 47 for(int k=1; k<=n; k++) //每列的值加起来,做最大子段和 48 temp[k] += map[j][k]; 49 sum = MaxArray(); 50 if(maxi < sum) 51 maxi = sum; 52 } 53 } 54 return maxi; 55 } 56 57 int main() 58 { 59 while(~scanf("%d",&n)) 60 { 61 for(int i=1; i<=n; i++) 62 for(int j=1; j<=n; j++) 63 scanf("%d",&map[i][j]); 64 int ans = MaxMatrix(); 65 printf("%d\n",ans); 66 } 67 return 0; 68 }