URAL 1143 Electric Path (黑书例题,DP)

本文介绍了一种使用动态规划解决凸多边形中最小路径问题的方法,通过定义状态转移方程,实现从任意点出发遍历一定数量点的最短路径计算,并利用记忆化搜索提高效率。

Problem Links: http://acm.timus.ru/problem.aspx?space=1&num=1143

 

由于所有点构成一个凸多边形,所以要使总线路最短,则线路必不相交。所以第 i 个点,必然只能走到 i+1 或者 i-1,当然对于点1的话,则走到2或者n(环状)。

定义状态dp[s][l][0]表示从s出发,遍历 l 个点的最短线路,dp[s][l][1]表示从s+l-1(相当于s-1)出发,遍历 l 个点的最短线路。比如从1出发,若到达2,则得到子问题dp[1+1][l-1][0],既子问题为从2出发,遍历 l-1 个点的最短线路,若到达 l,则有dp[1+1][l-1][1],表示从 l(2+l-1-1)出发,遍历 l-1 个点的最短线路。所以有:

dp[s][l][0] = min(dis[s][s+1]+dp[s+1][l-1][0],dis[s][s+l-1]+dp[s+1][l-1][1]); 

dp[s][l][1] = min(dis[s+l-1][s]+dp[s][l-1][0],dis[s+l-1][s+l-2]+dp[s][l-1][1]);

其中dis[s][s+1]为s到s+1的距离。注意s+l-1会大于n,注意取模即可。然后就是记忆化搜索了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define SIZE 256

using namespace std;

int n;
double x[SIZE],y[SIZE];
double dp[SIZE][SIZE][2];
bool vis[SIZE][SIZE][2];
double dis[SIZE][SIZE];
const double inf = 10000000.0;

double dist(double sx,double sy,double ex,double ey)
{
    return sqrt((sx-ex)*(sx-ex)+(sy-ey)*(sy-ey));
}

double DP(int s,int l,int w)
{
    if(l == 1)
    {
        dp[s][l][w] = 0;
        vis[s][l][w] = true;
        return 0;
    }
    if(vis[s][l][w]) return dp[s][l][w];
    if(w == 0)
        dp[s][l][w] = min(dis[s][(s+1)%n]+DP((s+1)%n,l-1,0),dis[s][(s+l-1)%n]+DP((s+1)%n,l-1,1));
    else
        dp[s][l][w] = min(dis[(s+l-1)%n][s]+DP(s,l-1,0),dis[(s+l-1)%n][(s+l-2)%n]+DP(s,l-1,1));
    vis[s][l][w] = true;
    return dp[s][l][w];
}

int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=0; i<n; i++)
            scanf("%lf%lf",&x[i],&y[i]);
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<n; j++)
            {
                if(i == j) dis[i][j] = 0;
                else dis[i][j] = dist(x[i],y[i],x[j],y[j]);
            }
        }
        double ans = inf;
        for(int j=0; j<n; j++)
            for(int k=0; k<n; k++)
                dp[j][k][0] = dp[j][k][1] = inf;
        for(int i=0; i<n; i++)
            dp[i][1][0] = dp[i][1][1] = 0;
        memset(vis,0,sizeof(vis));
        for(int i=0; i<n; i++)
            ans = min(ans,DP(i,n,0));
        printf("%.3lf\n",ans);
    }
    return 0;
}


 

【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值