URAL 1143 Electric Path (黑书例题,DP)

本文介绍了一种使用动态规划解决凸多边形中最小路径问题的方法,通过定义状态转移方程,实现从任意点出发遍历一定数量点的最短路径计算,并利用记忆化搜索提高效率。

Problem Links: http://acm.timus.ru/problem.aspx?space=1&num=1143

 

由于所有点构成一个凸多边形,所以要使总线路最短,则线路必不相交。所以第 i 个点,必然只能走到 i+1 或者 i-1,当然对于点1的话,则走到2或者n(环状)。

定义状态dp[s][l][0]表示从s出发,遍历 l 个点的最短线路,dp[s][l][1]表示从s+l-1(相当于s-1)出发,遍历 l 个点的最短线路。比如从1出发,若到达2,则得到子问题dp[1+1][l-1][0],既子问题为从2出发,遍历 l-1 个点的最短线路,若到达 l,则有dp[1+1][l-1][1],表示从 l(2+l-1-1)出发,遍历 l-1 个点的最短线路。所以有:

dp[s][l][0] = min(dis[s][s+1]+dp[s+1][l-1][0],dis[s][s+l-1]+dp[s+1][l-1][1]); 

dp[s][l][1] = min(dis[s+l-1][s]+dp[s][l-1][0],dis[s+l-1][s+l-2]+dp[s][l-1][1]);

其中dis[s][s+1]为s到s+1的距离。注意s+l-1会大于n,注意取模即可。然后就是记忆化搜索了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define SIZE 256

using namespace std;

int n;
double x[SIZE],y[SIZE];
double dp[SIZE][SIZE][2];
bool vis[SIZE][SIZE][2];
double dis[SIZE][SIZE];
const double inf = 10000000.0;

double dist(double sx,double sy,double ex,double ey)
{
    return sqrt((sx-ex)*(sx-ex)+(sy-ey)*(sy-ey));
}

double DP(int s,int l,int w)
{
    if(l == 1)
    {
        dp[s][l][w] = 0;
        vis[s][l][w] = true;
        return 0;
    }
    if(vis[s][l][w]) return dp[s][l][w];
    if(w == 0)
        dp[s][l][w] = min(dis[s][(s+1)%n]+DP((s+1)%n,l-1,0),dis[s][(s+l-1)%n]+DP((s+1)%n,l-1,1));
    else
        dp[s][l][w] = min(dis[(s+l-1)%n][s]+DP(s,l-1,0),dis[(s+l-1)%n][(s+l-2)%n]+DP(s,l-1,1));
    vis[s][l][w] = true;
    return dp[s][l][w];
}

int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=0; i<n; i++)
            scanf("%lf%lf",&x[i],&y[i]);
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<n; j++)
            {
                if(i == j) dis[i][j] = 0;
                else dis[i][j] = dist(x[i],y[i],x[j],y[j]);
            }
        }
        double ans = inf;
        for(int j=0; j<n; j++)
            for(int k=0; k<n; k++)
                dp[j][k][0] = dp[j][k][1] = inf;
        for(int i=0; i<n; i++)
            dp[i][1][0] = dp[i][1][1] = 0;
        memset(vis,0,sizeof(vis));
        for(int i=0; i<n; i++)
            ans = min(ans,DP(i,n,0));
        printf("%.3lf\n",ans);
    }
    return 0;
}


 

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值