URAL 1143 Electric Path (黑书例题,DP)

本文介绍了一种使用动态规划解决凸多边形中最小路径问题的方法,通过定义状态转移方程,实现从任意点出发遍历一定数量点的最短路径计算,并利用记忆化搜索提高效率。

Problem Links: http://acm.timus.ru/problem.aspx?space=1&num=1143

 

由于所有点构成一个凸多边形,所以要使总线路最短,则线路必不相交。所以第 i 个点,必然只能走到 i+1 或者 i-1,当然对于点1的话,则走到2或者n(环状)。

定义状态dp[s][l][0]表示从s出发,遍历 l 个点的最短线路,dp[s][l][1]表示从s+l-1(相当于s-1)出发,遍历 l 个点的最短线路。比如从1出发,若到达2,则得到子问题dp[1+1][l-1][0],既子问题为从2出发,遍历 l-1 个点的最短线路,若到达 l,则有dp[1+1][l-1][1],表示从 l(2+l-1-1)出发,遍历 l-1 个点的最短线路。所以有:

dp[s][l][0] = min(dis[s][s+1]+dp[s+1][l-1][0],dis[s][s+l-1]+dp[s+1][l-1][1]); 

dp[s][l][1] = min(dis[s+l-1][s]+dp[s][l-1][0],dis[s+l-1][s+l-2]+dp[s][l-1][1]);

其中dis[s][s+1]为s到s+1的距离。注意s+l-1会大于n,注意取模即可。然后就是记忆化搜索了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define SIZE 256

using namespace std;

int n;
double x[SIZE],y[SIZE];
double dp[SIZE][SIZE][2];
bool vis[SIZE][SIZE][2];
double dis[SIZE][SIZE];
const double inf = 10000000.0;

double dist(double sx,double sy,double ex,double ey)
{
    return sqrt((sx-ex)*(sx-ex)+(sy-ey)*(sy-ey));
}

double DP(int s,int l,int w)
{
    if(l == 1)
    {
        dp[s][l][w] = 0;
        vis[s][l][w] = true;
        return 0;
    }
    if(vis[s][l][w]) return dp[s][l][w];
    if(w == 0)
        dp[s][l][w] = min(dis[s][(s+1)%n]+DP((s+1)%n,l-1,0),dis[s][(s+l-1)%n]+DP((s+1)%n,l-1,1));
    else
        dp[s][l][w] = min(dis[(s+l-1)%n][s]+DP(s,l-1,0),dis[(s+l-1)%n][(s+l-2)%n]+DP(s,l-1,1));
    vis[s][l][w] = true;
    return dp[s][l][w];
}

int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=0; i<n; i++)
            scanf("%lf%lf",&x[i],&y[i]);
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<n; j++)
            {
                if(i == j) dis[i][j] = 0;
                else dis[i][j] = dist(x[i],y[i],x[j],y[j]);
            }
        }
        double ans = inf;
        for(int j=0; j<n; j++)
            for(int k=0; k<n; k++)
                dp[j][k][0] = dp[j][k][1] = inf;
        for(int i=0; i<n; i++)
            dp[i][1][0] = dp[i][1][1] = 0;
        memset(vis,0,sizeof(vis));
        for(int i=0; i<n; i++)
            ans = min(ans,DP(i,n,0));
        printf("%.3lf\n",ans);
    }
    return 0;
}


 

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值