URAL 1143 Electric Path (黑书例题,DP)

本文介绍了一种使用动态规划解决凸多边形中最小路径问题的方法,通过定义状态转移方程,实现从任意点出发遍历一定数量点的最短路径计算,并利用记忆化搜索提高效率。

Problem Links: http://acm.timus.ru/problem.aspx?space=1&num=1143

 

由于所有点构成一个凸多边形,所以要使总线路最短,则线路必不相交。所以第 i 个点,必然只能走到 i+1 或者 i-1,当然对于点1的话,则走到2或者n(环状)。

定义状态dp[s][l][0]表示从s出发,遍历 l 个点的最短线路,dp[s][l][1]表示从s+l-1(相当于s-1)出发,遍历 l 个点的最短线路。比如从1出发,若到达2,则得到子问题dp[1+1][l-1][0],既子问题为从2出发,遍历 l-1 个点的最短线路,若到达 l,则有dp[1+1][l-1][1],表示从 l(2+l-1-1)出发,遍历 l-1 个点的最短线路。所以有:

dp[s][l][0] = min(dis[s][s+1]+dp[s+1][l-1][0],dis[s][s+l-1]+dp[s+1][l-1][1]); 

dp[s][l][1] = min(dis[s+l-1][s]+dp[s][l-1][0],dis[s+l-1][s+l-2]+dp[s][l-1][1]);

其中dis[s][s+1]为s到s+1的距离。注意s+l-1会大于n,注意取模即可。然后就是记忆化搜索了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define SIZE 256

using namespace std;

int n;
double x[SIZE],y[SIZE];
double dp[SIZE][SIZE][2];
bool vis[SIZE][SIZE][2];
double dis[SIZE][SIZE];
const double inf = 10000000.0;

double dist(double sx,double sy,double ex,double ey)
{
    return sqrt((sx-ex)*(sx-ex)+(sy-ey)*(sy-ey));
}

double DP(int s,int l,int w)
{
    if(l == 1)
    {
        dp[s][l][w] = 0;
        vis[s][l][w] = true;
        return 0;
    }
    if(vis[s][l][w]) return dp[s][l][w];
    if(w == 0)
        dp[s][l][w] = min(dis[s][(s+1)%n]+DP((s+1)%n,l-1,0),dis[s][(s+l-1)%n]+DP((s+1)%n,l-1,1));
    else
        dp[s][l][w] = min(dis[(s+l-1)%n][s]+DP(s,l-1,0),dis[(s+l-1)%n][(s+l-2)%n]+DP(s,l-1,1));
    vis[s][l][w] = true;
    return dp[s][l][w];
}

int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=0; i<n; i++)
            scanf("%lf%lf",&x[i],&y[i]);
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<n; j++)
            {
                if(i == j) dis[i][j] = 0;
                else dis[i][j] = dist(x[i],y[i],x[j],y[j]);
            }
        }
        double ans = inf;
        for(int j=0; j<n; j++)
            for(int k=0; k<n; k++)
                dp[j][k][0] = dp[j][k][1] = inf;
        for(int i=0; i<n; i++)
            dp[i][1][0] = dp[i][1][1] = 0;
        memset(vis,0,sizeof(vis));
        for(int i=0; i<n; i++)
            ans = min(ans,DP(i,n,0));
        printf("%.3lf\n",ans);
    }
    return 0;
}


 

**项目概述:** 本资源提供了一套采用Vue.js与JavaScript技术栈构建的古籍文献文字检测与识别系统的完整源代码及相关项目文档。当前系统版本为`v4.0+`,基于`vue-cli`脚手架工具开发。 **环境配置与运行指引:** 1. **获取项目文件**后,进入项目主目录。 2. 执行依赖安装命令: ```bash npm install ``` 若网络环境导致安装缓慢,可通过指定镜像源加速: ```bash npm install --registry=https://registry.npm.taobao.org ``` 3. 启动本地开发服务器: ```bash npm run dev ``` 启动后,可在浏览器中查看运行效果。 **构建与部署:** - 生成测试环境产物: ```bash npm run build:stage ``` - 生成生产环境优化版本: ```bash npm run build:prod ``` **辅助操作命令:** - 预览构建后效果: ```bash npm run preview ``` - 结合资源分析报告预览: ```bash npm run preview -- --report ``` - 代码质量检查与自动修复: ```bash npm run lint npm run lint -- --fix ``` **适用说明:** 本系统代码经过完整功能验证,运行稳定可靠。适用于计算机科学、人工智能、电子信息工程等相关专业的高校师生、研究人员及开发人员,可用于学术研究、课程实践、毕业设计或项目原型开发。使用者可在现有基础上进行功能扩展或定制修改,以满足特定应用场景需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【EI复现】基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现)内容概要:本文介绍了基于阶梯碳交易机制的虚拟电厂优化调度模型,重点研究了包含P2G-CCS(电转气-碳捕集与封存)耦合技术和燃气掺氢技术的综合能源系统在Matlab平台上的仿真与代码实现。该模型充分考虑碳排放约束与阶梯式碳交易成本,通过优化虚拟电厂内部多种能源设备的协同运行,提升能源利用效率并降低碳排放。文中详细阐述了系统架构、数学建模、目标函数构建(涵盖经济性与环保性)、约束条件处理及求解方法,并依托YALMIP工具包调用求解器进行实例验证,实现了科研级复现。此外,文档附带网盘资源链接,提供完整代码与相关资料支持进一步学习与拓展。; 适合人群:具备一定电力系统、优化理论及Matlab编程基础的研究生、科研人员或从事综合能源系统、低碳调度方向的工程技术人员;熟悉YALMIP和常用优化算法者更佳。; 使用场景及目标:①学习和复现EI级别关于虚拟电厂低碳优化调度的学术论文;②掌握P2G-CCS、燃气掺氢等新型低碳技术在电力系统中的建模与应用;③理解阶梯碳交易机制对调度决策的影响;④实践基于Matlab/YALMIP的混合整数线性规划或非线性规划问题建模与求解流程。; 阅读建议:建议结合提供的网盘资源,先通读文档理解整体思路,再逐步调试代码,重点关注模型构建与代码实现之间的映射关系;可尝试修改参数、结构或引入新的约束条件以深化理解并拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值