该项目主要参考以下的文献
[1] H. Alemdar, N. Caldwell, V. Leroy, A. Prost-Boucle, and F. P´etrot. Ternary Neural Networks for Resource-Efficient AI Applications. CoRR, abs/1609.00222, 2016.
[2] R. Andri, L. Cavigelli, D. Rossi, and L. Benini.YodaNN: An ultra-low power convolutional neural network accelerator based on binary weights. CoRR, abs/1606.05487, 2016.
[3] K. Chellapilla, S. Puri, and P. Simard. High performance convolutional neural networks for document processing. In Proc. ICFHR. Suvisoft, 2006.
[4] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. In Proc. ACM/IEEE ISCA. IEEE, 2016.
[5] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural networks with weights and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016.
[6] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy,R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L.McKinstry, T. Me

该文主要探讨了FINN项目,它借鉴了一系列关于资源高效AI应用的三元神经网络(Ternary Neural Networks, TNNs)文献。这些文献涉及到了二值神经网络(BNNs)、FPGA加速器设计,以及针对能源效率和计算性能的优化。通过引用多个深度学习模型的压缩、量化和硬件实现的研究,强调了FINN在实现低功耗、高性能的神经网络计算方面的作用。"
129431855,10885597,使用servlet+jdbc实现数据库用户注册,"['servlet', '数据库', 'java']
最低0.47元/天 解锁文章
821





