HNUST-OJ-2295:嘉嘉的队伍配置

本文解析了原神玩家如何通过优化角色组合,最大化配置4人队伍,确保至少一位输出和一位辅助,以应对各类副本。数学计算在角色培养中的应用和队伍数量的确定。

题目描述:

「当你重新踏上旅途之后,一定要记得旅途本身的意义。
   提瓦特的飞鸟、诗和城邦,女皇、愚人和怪物……都是你旅途的一部分。
   终点并不意味着一切,在抵达终点之前,用你的眼睛,多多观察这个世界吧……」


      嘉嘉最近迷上了原神这款游戏,不仅是因为可以享受精彩的剧情,同时还可以养成自己喜爱的角色,挑战许多奖励丰厚的怪物副本。为了通过困难的副本,他每天都在培养游戏中的角色,把他们变得更强。嘉嘉费劲心思培养这么多角色的目的,是为了组建出许多支强力的队伍,这样就可以轻松通过不同类型的困难副本。
      在原神这款游戏中,一支队伍的最大角色人数为4。我们认定,一个角色的队伍定位可以简单地分为以下两种:输出、辅助。而且一个角色有且只有一种队伍定位。
在嘉嘉眼里,要配置一支“强力的队伍”,必须要同时满足以下三个条件:
1、队伍中的角色人数为4,即达到队伍的最大人数
2、队伍中至少要拥有一位输出角色
3、队伍中至少要拥有一位辅助角色
也就是说,队伍中的4位角色不能均为输出角色,或者均为辅助角色,这是非常不合理的一支队伍。故一支合理的队伍,必须要至少包含一位输出角色和一位辅助角色。

       在日复一日的培养下,现在嘉嘉已经拥有了n位输出角色和m位辅助角色,而且每位角色最多只能加入一个队伍。现在他想配置尽可能多的“强力的队伍”,你能告诉他最多能配置多少支“强力的队伍”吗?

输入:

 第一行包含一个数字T(1≤T≤106)
接下来T行,每一行包括两个数字n和m,表示有n位输出角色和m位辅助角色(0≤n,m≤109)。

输出:

 每组测试数据输出一行,表示最大配置的队伍数。

样例输入:

3
3 5
100  200
114514  1919810

 样例输出:

2
75
114514

解题心路:

答主在这道题困了贼久,不知道怎么回事,做后面的题几次三番重新看这道题,开始以为暴力,结果看了下数据果断放弃,明白是道答主痛苦的数学题,虽然最后做了出来,但耗时贼长,累了累了。

 代码实现:

#include <stdio.h>
#include <stdlib.h>
#include<math.h>
#include<string.h>
 
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        if(n==0||m==0)printf("0\n");
        else
        {
            int a=(n+m)/4;
            if(a<=n&&a<=m)
            {
                printf("%d\n",a);
            }
            else if(a>n||a>m)
            {
                int min=m;
                if(m>=n)min=n;
                 printf("%d\n",min);
            }
 
 
 
 
 
        }
 
 
 
 
 
 
 
 
    }
 
 
 
}

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值