NeHe OpenGL Lesson30 – Collision Detection

本文探讨了如何在游戏开发中实现高效的碰撞检测与响应,包括射线与平面、射线与圆柱、球体与球体之间的碰撞判断,以及基于碰撞点法线计算反射方向和速度的方法。介绍了一种实用的策略,确保物体总是在最近的碰撞时间移动,避免了帧间多个连续碰撞的问题。此外,还讨论了复杂形状物体的碰撞处理,以及如何利用专业物理库简化这一过程。

screen_shot14-300x224 This sample shows us how to work with collision detection and response. At first, it provide some ideas about how to determine whether a intersection happened between a ray and a plane, a ray and a cylinder, sphere and sphere. Then set up the collision response, calculate reflection direction and speed based on the collision point normal.
At last, a very practical method provided here that simulating the whole moving stuffs always with the nearest collision time. Generally, we would some update function and with a double type delta time as input parameter.  And we want the object’s position information after the delta time elapsed with this function. We may predict whether some collision happen or not during such delta time, then calculate the collision response basing on the prediction, and advance to the next frame.  But the problem is that some sequential several collisions may happen during the frame time. A better solution to handle this is that we always try to find the nearest the collision point, then moving all objects to this collision point, then advance the collision time until the end of the frame time. Before we start calculate the new positions for objects, we need to update it’s velocities first. Here are the pseudo code that does what you really need:

void CollisionHandle(float deltaTime)
{
    compute moving object velocity;
 
    totalTime = 0.0f;
    while (totalTime < deltaTime)
    {
        CollisionTime = {compute nearest collision time};
        if ( CollisionTime + totalTime > deltaTime )
        {
            MovingTime = (deltaTime - totalTime );
            { Advance all moving objects with "MovingTime" };
            break;
        }
        else
        {
            { Advance all non-nearest moving objects with "CollisionTime" };
            { Collision response calculation happen here };
            totalTime += CollisionTime;
        }
    }
}

Well, this method may works well at some situation. But you may already notice that this method will make the whole moving & collision process become sequential. Actually, some of them will not collision at all during the frame time.  Maybe we could separate moving objects into different groups, and make them run parallel. Another question is what we should do when the shape of the object become very complicated, may be more than one collision point found at the same time. Well, why do not we ask help for some professional physics library instead of writing our own library.

 

The explosion effect that used here were not billboards, that are two quads(with front and back surfaces) which perpendicular with each other. With this method, we do not need to get the camera orientation at all. This is another way to simulate some trees.

 

The full source code could be found here.

转载于:https://www.cnblogs.com/open-coder/archive/2012/08/23/2653221.html

内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值