relief

Relief [generation=heuristic, evaluation=distance].
Basic algorithm construct :
- each feature is assigned cumulative weightage
   computed over a predefined number of sample data set
   selected from the training data set.
- feature with weightage over a certain threshold
   is the selected feature subset.
Assignment of weightage :
-  instances belongs to similar class should stay closer together than     
   those in a different class.
- near-hit instance    = similar class.
- near-miss instance = different class.
- W = W - diff(X,nearhit)2 + diff(X,nearmiss)2





1. selected_subset = {}
2. init. all feature weightage = 0  (eg. for 2 features : w1=0, w2=0)
3. for i = 1 to no_of_sample
   get one instance X from the training data set D.
   get nearhit    H  = instance in D where dist(X,H) is closest & X.class=H.class
   get nearmiss M = instance in D where dist(X,M) is closest & X.class<>M.class
   update weightage for all features :
-    weightage   = weightage  -diff(x,h)2    +diff(x,m)2
  eg. weightage1 = weightage1 -diff(x1,h1)2 +diff(x1,m1)2
  eg. weightage2 = weightage2 -diff(x2,h2)2 +diff(x2,m2)2
4. for j = 1 to no_of_feature (eg. 2)
   if weightagej >= Threshold, add featurej to selected_subset




W = W - diff(X,nearhit)2 - diff(X,nearmiss)2
- try to decrease weightage for instances belong to the same class
   (*note: their dist. diff. should be small).
- try to increase weightage for instances belong to diff class
   (*note: their dist. diff. should be large).
- If (W<=0), then sign of irrelevancy or redundancy.
- If (W>0),   then instances in diff. class is further apart as expected.
Disadvantages:
- applicable only to binary class problem.
- insufficient training instances fool relief.
- if most features are relevant, relief select all (even if not necessary).
Advantages:
- noise-tolerant.
- unaffected by feature interaction
   (weightage is cumulative & det. collectively).
内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值