PBRT_V2 总结记录 <34> Blinn 和 Anisotropic

本文深入探讨了微表面分布函数的两种模型:Blinn和Anisotropic。Blinn模型通过指数衰减来描述微表面法线方向的分布,适用于光滑到粗糙表面的模拟。Anisotropic模型则考虑了各向异性表面的特性,如磨砂金属和某些织物,通过两个参数ex和ey来描述不同方向上的分布情况。

概述

这里的两个类主要是 上一节中所说的,MicrofacetDistribution 的子类,MicrofacetDistribution 主要代表的是 D 函数,

D(wh):distribution function D(ωh) that gives the probability that a microfacet has orientation ωh (判断一个 microfacets  的法线等于 wh 的 概率)

 

1. Blinn

(D 函数的 : wh 朝向 法线的概率比较大,概率一直下降,直到 wh 朝向 切线 的时候,概率为0)

Blinn (1977) proposed a model where the distribution of microfacet normals is approximated
by an exponential falloff. The most likely microfacet orientation in this model is
in the surface normal direction, falling off to no microfacets oriented perpendicular to
the normal.
For smooth surfaces, this falloff happens very quickly; for rough surfaces, it
is more gradual.

 

Figure 8.18: The Effect of Varying the Exponent for the Blinn Microfacet Distribution Model. (a) Distribution from exponent
e = 4, (b) e = 20. The larger the exponent, the more likely it is that a microfacet will be oriented close to the surface normal, as
would be the case for a smooth surface.

 

BRDF 就是:

 

Blinn 类:

class Blinn : public MicrofacetDistribution {
public:
    Blinn(float e) { if (e > 10000.f || isnan(e)) e = 10000.f;
                     exponent = e; }
    // Blinn Public Methods
    float D(const Vector &wh) const {
        float costhetah = AbsCosTheta(wh);
        return (exponent+2) * INV_TWOPI * powf(costhetah, exponent);
    }
    virtual void Sample_f(const Vector &wi, Vector *sampled_f, float u1, float u2, float *pdf) const;
    virtual float Pdf(const Vector &wi, const Vector &wo) const;
private:
    float exponent;
};

重点主要是 D 函数,其实就是翻译上面的公式。

 

 

2. Anisotropic

Because the Blinn distribution described in the last section only depends on the angle
between the half-angle and the surface normal, it is radially symmetric and yields an
isotropic BRDF. Ashikhmin and Shirley (2000, 2002) developed a microfacet distribution
function for modeling the appearance of anisotropic(各向异性) surfaces. Recall that an anisotropic
BRDF is one where the reflection characteristics at a point vary as the surface is rotated
about that point in the plane perpendicular to the surface normal. Brushed(磨砂) metals(金属) and
some types of fabric(布) exhibit anisotropy.

Their model takes two parameters: ex, which gives an exponent for the distribution function for half-angle vectors with
an azimuthal angle that orients them exactly along the x axis, and ey, an exponent for
microfacets oriented along the y axis. Exponents for intermediate orientations are found
by considering these two values as the lengths of the axes of an ellipse and finding the
appropriate radius for the actual microfacet orientation (Figure 8.19).

 

Figure 8.19: The two exponents ex and ey for the anisotropic microfacet distribution function give
specular exponents for microfacets facing exactly along the x and y axes, respectively. For microfacets
with other orientations, the exponent e is computed by finding the radius e of the ellipse for the actual
orientation angle φ.

 

 BRDF:

 

The terms of the distribution function can be computed quite efficiently. Recall from the
beginning of the chapter that cos φ = x/ sin θ and sin φ = y/ sin θ. Since we want to
compute cos^2 φ and sin^2 φ, however, we can use the substitution sin^2 θ + cos^2 θ = 1, so
that

 

Anisotropic 类


class Anisotropic : public MicrofacetDistribution {
public:
    // Anisotropic Public Methods
    Anisotropic(float x, float y) {
        ex = x; ey = y;
        if (ex > 10000.f || isnan(ex)) ex = 10000.f;
        if (ey > 10000.f || isnan(ey)) ey = 10000.f;
    }
    float D(const Vector &wh) const {
        float costhetah = AbsCosTheta(wh);
        float d = 1.f - costhetah * costhetah;
        if (d == 0.f) return 0.f;
        float e = (ex * wh.x * wh.x + ey * wh.y * wh.y) / d;
        return sqrtf((ex+2.f) * (ey+2.f)) * INV_TWOPI * powf(costhetah, e);
    }
    void Sample_f(const Vector &wo, Vector *wi, float u1, float u2, float *pdf) const;
    float Pdf(const Vector &wo, const Vector &wi) const;
    void sampleFirstQuadrant(float u1, float u2, float *phi, float *costheta) const;
private:
    float ex, ey;
};

 

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化并行计算等改进策略。; 适合人群:具备一定Python编程基础优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值