PBRT_V2 总结记录 <30> SpecularTransmission

本文详细介绍了SpecularTransmission的双向传输函数(BTDF)的推导过程,通过Fresnel方程和Snell定律解释了透射率与入射角的关系。此外,还讨论了SpecularTransmission类的实现,包括构造函数、f函数和Sample_f函数的工作原理,特别强调了在不同入射角度下透射效果的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推导 specular transmission 的 BTDF

We will now derive the BTDF for specular transmission

 

Figure 8.8: The amount of transmitted radiance at the boundary between media with different
indices of refraction is scaled by the squared ratio of the two indices of refraction. Intuitively, this can
be understood as the result of the radiance’s differential solid angle being compressed or expanded
as a result of transmission.

 

a.

Consider incident radiance arriving at the boundary between two media, with indices of
refraction ηi and ηo for the incoming and outgoing media, respectively (Figure 8.8).
We
use τ to denote the fraction of incident energy that is transmitted to the outgoing direction,
as given by the Fresnel equations, so τ = 1− Fr(ωi). The amount of transmitted
differential flux, then, is

If we use the definition of radiance, Equation (5.2), we have

Expanding the solid angles to spherical angles, we have

We can now differentiate Snell’s law with respect to θ, which gives the relation

(上面的这里其实就是对 Snell's law 进行微分 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值