目录
1. 投影变换
定义:
向量空间 C n C^{n} Cn 中, 子空间 L L L 与 M M M 满足 C n = L ⊕ M C^{n}=L \oplus M Cn=L⊕M, 对 ∀ x ∈ C n \forall x \in C^{n} ∀x∈Cn, 分解式 x = y + z , y ∈ L , z ∈ M x=y+z, y \in L, z \in M x=y+z,y∈L,z∈M 称变换 T L , M ( x ) = y T_{L, M}(x)=y TL,M(x)=y 到 L L L 的投影
性质:
性质 ( 1 ) : T L , M (1): T_{L, M} (1):TL,M 是线性变换
性质(2): R ( T L , M ) = L , N ( T L , M ) = M R\left(T_{L, M}\right)=L, N\left(T_{L, M}\right)=M R(TL,M)=L,N(TL,M)=M
性质(3): ∀ x ∈ L ⇒ T L , M ( x ) = x ∀ x ∈ M ⇒ T L , M ( x ) = 0 \forall x \in L \Rightarrow T_{L, M}(x)=x \quad \forall x \in M \Rightarrow T_{L, M}(x)=0 ∀x∈L⇒TL,M(x)=x∀x∈M⇒TL,M(x)=0
投影矩阵:
T L , M ( x ) = y ⇔ P L , M x = y T_{L, M}(x)=y \Leftrightarrow P_{L, M} x=y TL,M(x)=y⇔PL,Mx=y
x ∈ L ⇒ T L , M ( x ) = x ⇒ P L , M x = x x \in L \Rightarrow T_{L, M}(x)=x \Rightarrow P_{L, M} x=x x∈L⇒TL,M(x)=x⇒PL,Mx=x
x ∈ M ⇒ T L , M ( x ) = 0 ⇒ P L , M x = 0 x \in M \Rightarrow T_{L, M}(x)=0 \Rightarrow P_{L, M} x=0 x∈M⇒TL,M(x)=0⇒PL,Mx=0
1.1 投影变换相关定理
已知: R ( A ) = { y ∣ y = A x , x ∈ C n } , N ( A ) = { x ∣ A x = 0 , x ∈ C n } R(A)=\left\{y \mid y=A x, x \in C^{n}\right\}, N(A)=\left\{x \mid A x=0, x \in C^{n}\right\} R(A)={
y∣y=Ax,x∈Cn},N(A)={
x∣Ax=0,x∈Cn}
引理1: A n × n , A 2 = A ⇒ N ( A ) = R ( I − A ) A_{n \times n}, A^{2}=A \Rightarrow N(A)=R(I-A) An×n,A2=A⇒N(A)=R(I−A)
定理1: P n × n = P L , M ⇔ P 2 = P P_{n \times n}=P_{L, M} \Leftrightarrow P^{2}=P Pn×n=PL,M⇔P2=P
1.2 已知两个空间,如何得到对应的投影矩阵
先设:
dim L = r , L \operatorname{dim} L=r, L dimL=r,L 的基为 x 1 , ⋯ , x r : X = ( x 1 , ⋯ , x r ) x_{1}, \cdots, x_{r}: X=\left(x_{1}, \cdots, x_{r}\right) x1,⋯,xr:X=(x1,⋯,xr)
dim M = n − r , M \operatorname{dim} M=n-r, M dimM=n−r,M 的基为 y 1 , ⋯ , y n − r : Y = ( y 1 , ⋯ , y n − r ) y_{1}, \cdots, y_{n-r}: Y=\left(y_{1}, \cdots, y_{n-r}\right) y1,⋯,yn−r:Y=(y1,⋯,yn−r)
所以:
P L , M x i = x i ⇒ P L , M X = X P_{L, M} x_{i}=x_{i} \Rightarrow P_{L, M} X=X PL,Mxi=xi⇒PL,MX=X
P L , M y j = θ ⇒ P L , M Y = O P_{L, M} y_{j}=\theta \Rightarrow P_{L, M} Y=O PL,Myj=θ⇒PL,MY=O
⇒ P L , M = ( X ∣ O ) ( X ∣ Y ) − 1 \Rightarrow P_{L, M}=(X \mid O)(X \mid Y)^{-1} ⇒PL,M=

本文详细介绍了向量空间中的投影变换概念及其性质,并给出了投影矩阵的具体计算方法。此外,还深入探讨了广义逆矩阵的存在性、性质及构造方法,包括不同类型的广义逆矩阵及其计算。
最低0.47元/天 解锁文章
139

被折叠的 条评论
为什么被折叠?



