HDU 1054.Strategic Game【动态规划、DP】【4月7】

本文介绍了一种解决特定战略游戏问题的方法,该游戏的目标是最小化士兵数量以观察所有道路。文章详细阐述了如何通过递归深度优先搜索算法来确定放置士兵的最佳位置。

Strategic Game

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6801    Accepted Submission(s): 3190


Problem Description
Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
or
node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

For example for the tree: 

 

the solution is one soldier ( at the node 1).

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:
 

Sample Input
4 0:(1) 1 1:(2) 2 3 2:(0) 3:(0) 5 3:(3) 1 4 2 1:(1) 0 2:(0) 0:(0) 4:(0)
 

Sample Output
1 2
 

当前节点不放,则子节点一定放;当前节点放,子节点放或不放两种选择,选择优者。具体看代码:

#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
#define MAXN 1510
vector <int> NEXT[MAXN];
int N, t, fa, nxt, ans;
int s[MAXN], dp[MAXN][2];
int DFS(int node, int flag)
{
    if(dp[node][flag] != -1) return dp[node][flag];//用dp数组保存,减少重复运算次数
    int sum = flag;
    vector <int>::iterator it = NEXT[node].begin();
    for(;it != NEXT[node].end(); ++it)
    {
        if(flag == 0) sum += DFS(*it, 1);//当前不放,子节点一定得放
        else sum += min(DFS(*it, 0),DFS(*it, 1));//当前放,子节点有两种选择,取小值
    }
    dp[node][flag] = sum;//用dp数组保存,减少重复运算次数
    return sum;
}
int main()
{
    while(scanf("%d", &N) != EOF && N)
    {
        for(int i = 0;i < N; ++i)
        {
            dp[i][0] = dp[i][1] = -1;
            s[i] = i;
            NEXT[i].clear();
        }
        for(int i = 0;i < N; ++i)
        {
            scanf("%d:(%d)", &fa, &t);
            while(t--)
            {
                scanf("%d", &nxt);
                s[nxt] = fa;//保存父子关系,以便查找根节点
                NEXT[fa].push_back(nxt);
            }
        }
        for(int i = 0;i < N; ++i)
        {
            if(s[i] == i)//根节点
            {
                ans = min(DFS(i, 0), DFS(i, 1));
                break;
            }
        }
        cout << ans << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值