青蛙跳台阶问题

题目:一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级。求该青蛙跳上一个n 级的台阶总共有多少种跳法。


我的思路:最开始我的思路是把这个看成是一个数学问题,n=i*1+k*2先把所有可能满足这个公式的i和k求出来。然后在对i和k做排列组合。很明显i的范围应该是0<i<=n,所以我们已i开始迭代。下面贴上代码吧。把注释都写上!

public int JumpFloor(int target) {
		int step = 0;
		for (int i = 0; i <= target; i++) {

			if (0 == (target - i) % 2) {// 只要满足这个条件就是符合的组合
				// 只要能够符合的都是可以的情况

				// I代表的是跳一步的次数,如果I=0或者I=target这不可能出现多种排列的情况
				if (i == 0 || i == target) {
					step++;// 只有一种排列情况,要么全是1,要么全是2
				} else {
					/*
					 * 出现全排列的情况。利用排列组合的思想算出这一次有多少种走法
					 */
					int oneNum = i;// 为1的有i个
					int twoNums = (target - i) / 2;// 为2的有这么多个
					/**
					 * 全排列个数AII/AKK*AJJ(i表示中共的1和2的个数,k表示1的个数,
					 * j表示2的个数,simpleCircle是 算一个数的阶乘)
					 */
					int stepCount = simpleCircle(oneNum + twoNums)
							/ (simpleCircle(oneNum) * simpleCircle(twoNums));
					step += stepCount;

				}

			}

		}

		return step;
	}

	public int simpleCircle(int num) {// 简单的循环计算的阶乘
		int sum = 1;
		if (num < 0) {// 判断传入数是否为负数
			throw new IllegalArgumentException("必须为正整数!");// 抛出不合理参数异常
		}
		for (int i = 1; i <= num; i++) {// 循环num
			sum *= i;// 每循环一次进行乘法运算
		}

		return sum;// 返回阶乘的值
	}

小结:笔者这个解法虽然感觉思路比较清晰,但是感觉不是很巧妙!(其实数字算出来你会发现其实是一个fibo数列)没有亮点,但是这种解法当2变成其他数的时候是通用的


下面我们来看看网上大家的解法(这是一道剑指offer上面的题目),首先是结合Fibonacci数列来解决问题

分析:1)当n = 1, 只有1中跳法;当n = 2时,有两种跳法;当n = 3 时,有3种跳法;当n = 4时,有5种跳法;当n = 5时,有8种跳法;.......

        规律类似于Fibonacci数列

      2)

如果n=1,总步数f(n)=1;如果n=2,总步数f(n)=2。

另一方面,当n>=3,当前还剩的步数f(n),如果接下去跳一步,那么还剩下的步数是f(n-1);如果接下去跳两步,那么还剩下的步数是f(n-2),故:f(n)=f(n-1)+f(n-2)


int Fib(int n)
{//典型的fibo数列方法
	if (n <= 0)
	{
		cout << "error!" << endl;
		return -1;
	}

	if (1 == n)
	{
		return 1;
	}
	else if (2 == n)
	{
		return 2;
	}
	else
	{
		return Fib(n - 1) + Fib(n - 2);
	}
}

------------------------------------- ----------分割线--------------------- ------------------------------- ---------------------------

下面是这道题的变化题目,非常不错!

问:一只青蛙一次可以跳上1级台阶,也可以跳上2 级……它也可以跳上n 级,此时该青蛙跳上一个n级的台阶总共有多少种跳法?

用Fib(n)表示青蛙跳上n阶台阶的跳法数,青蛙一次性跳上n阶台阶的跳法数1(n阶跳),设定Fib(0) = 1;

       当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;

       当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = Fib(1) + Fib(0) = 2;

       当n = 3 时,有三种跳的方式,第一次跳出一阶后,后面还有Fib(3-1)中跳法; 第一次跳出二阶后,后面还有Fib(3-2)中跳法;第一次跳出三阶后,后面还有Fib(3-3)中跳法

        Fib(3) = Fib(2) + Fib(1)+Fib(0)=4;

       当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法..........................第一次跳出n阶后, 后面还有                Fib(n-n)中跳法.

       Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+..........+Fib(n-n)=Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-1)

      又因为Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-2)

      两式相减得:Fib(n)-Fib(n-1)=Fib(n-1)         =====》  Fib(n) = 2*Fib(n-1)     n >= 2

      递归等式如下:


代码特简单,但是分析就不是这么简单的事情了:

public int jumpN(int n) {
		if (n == 0 || n == 1) {
			return 1;
		}

		return 2 * jumpN(n - 1);

	}

其他想法目前还没有想出来,先贴着吧。

转载请注明http://blog.youkuaiyun.com/a837199685

<think>好的,我现在需要解决用户关于Java实现青蛙跳台问题递归和动态规划解决方案的查询。首先,我要回忆一下青蛙跳台问题的基本描述。根据引用[2]、[3]、[4],这个问题通常有两种情况:青蛙一次可以1级或2级台阶,求上n级台阶的方法数。而引用[4]提到更复杂的情况,青蛙可以上任意级数,但用户的问题可能集中在基础的1或2级的情况,因为这是最常见的版本。 接下来,用户需要Java的代码示例,特别是递归和动态规划两种方法。我需要确保提供的代码符合Java语法,并且正确实现算法递归方法相对直接,基于斐波那契数列,即f(n) = f(n-1) + f(n-2),基准条件是f(1)=1,f(2)=2。但要注意递归可能存在重复计算的问题,这自然引出动态规划的优化。 动态规划方面,引用[1]和[5]提到自顶向下的备忘录法和自底向上的方法。自顶向下通常用递归加记忆化,而自底向上则是迭代方式,使用数组存储中间结果,避免重复计算。用户可能希望看到这两种动态规划的实现。不过,考虑到代码示例的简洁性,可能先展示基础递归,然后展示自底向上的动态规划,以及可能的备忘录优化。 我需要检查引用中的内容是否提供了具体的代码。引用[2]和[3]提到了思路,但没有给出完整的Java代码。因此,我需要根据这些思路自行编写正确的示例。例如,递归函数在n=1时返回1,n=2返回2,否则递归调用。动态规划则创建一个数组dp,其中dp[i] = dp[i-1] + dp[i-2],初始化dp[1]和dp[2]。 另外,引用[5]提到动态规划的核心要素:最优子结构、状态转移方程、边界和重叠子问题。在青蛙跳台问题中,状态转移方程是f(n) = f(n-1) + f(n-2),边界条件是f(1)=1, f(2)=2,而重叠子问题确实存在,比如计算f(5)需要f(4)和f(3),而计算f(4)又需要f(3)和f(2),导致f(3)被多次计算。动态规划通过存储这些子问题的解来优化性能。 用户还可能关心时间复杂度和空间复杂度。递归方法的时间复杂度是O(2^n),而动态规划是O(n),因为每个子问题只计算一次。空间复杂度方面,递归的栈深度是O(n),而动态规划需要O(n)的数组空间,但可以进一步优化到O(1)如果只用变量存储前两个值。 最后,需要确保代码示例正确无误,并解释每一步的作用。例如,在动态规划中,循环从3开始到n,逐步填充dp数组。同时,提到可能的优化方法,比如空间优化,但保持示例简单易懂。 总结步骤: 1. 编写递归方法,解释基准条件和递归调用。 2. 编写动态规划方法,使用数组存储中间结果。 3. 对比两种方法的时间复杂度,强调动态规划的优势。 4. 可能提供进一步的优化建议,如空间优化到O(1)。 5. 确保代码符合Java语法,比如类和方法的结构。</think>### Java实现青蛙跳台算法 青蛙跳台问题是一个经典的动态规划问题,其核心是通过拆解子问题避免重复计算。以下是递归与动态规划两种实现方式: --- #### **1. 递归实现** 递归方法直接基于问题分解,但时间复杂度较高($O(2^n)$): ```java public class FrogJump { public static int jumpRecursive(int n) { if (n <= 0) return 0; if (n == 1) return 1; // 1级只有1种方式 if (n == 2) return 2; // 2级有两种方式:1+1或2 return jumpRecursive(n - 1) + jumpRecursive(n - 2); // 状态转移方程 } public static void main(String[] args) { System.out.println(jumpRecursive(5)); // 输出:8 } } ``` --- #### **2. 动态规划实现** 动态规划通过存储子问题解将时间复杂度优化到$O(n)$,空间复杂度$O(n)$: ```java public class FrogJump { public static int jumpDP(int n) { if (n <= 2) return n; int[] dp = new int[n + 1]; // 定义dp数组 dp[1] = 1; // 边界条件 dp[2] = 2; for (int i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; // 状态转移方程 } return dp[n]; } public static void main(String[] args) { System.out.println(jumpDP(5)); // 输出:8 } } ``` --- #### **3. 动态规划空间优化** 进一步将空间复杂度降低到$O(1)$: ```java public static int jumpDPOptimized(int n) { if (n <= 2) return n; int prev1 = 1, prev2 = 2, result = 0; for (int i = 3; i <= n; i++) { result = prev1 + prev2; // 计算当前台阶的解 prev1 = prev2; // 更新前两个台阶的状态 prev2 = result; } return result; } ``` --- ### 关键分析 1. **递归问题**:直接但效率低,因重复计算相同子问题[^5]。 2. **动态规划**:通过“记住历史解”避免重复计算,是典型的自底向上方法[^1]。 3. **状态转移方程**:$f(n) = f(n-1) + f(n-2)$,与斐波那契数列相同[^3]。 4. **边界条件**:$f(1)=1$(1级)、$f(2)=2$(2级)[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值