FPN(Feature Pyramid Network),即特征金字塔网络,是一种用于解决目标检测和语义分割中多尺度问题的深度学习网络结构。以下是对FPN网络的详细介绍:
一、概述
FPN网络是在2017年的CVPR会议上提出的,主要目的是通过特征融合的方式,在不显著增加计算量的情况下,提升多尺度目标的检测性能,尤其是对小目标的检测能力。它通过构建多尺度特征金字塔,将高层特征图的语义信息与低层特征图的空间信息进行融合,生成具有丰富多尺度信息的特征表示。
二、FPN的提出背景、时间及作者
提出背景:
为了增强语义性,传统的物体检测模型通常只在深度卷积网络的最后一个特征图上进行后续操作,而这一层对应的下采样率(图像缩小的倍数)通常又比较大,如16、32,造成小物体在特征图上的有效信息较少,小物体的检测性能会急剧下降,这个问题也被称为多尺度问题。 解决多尺度问题的关键在于如何提取多尺度的特征。传统的方法有图像金字塔(Image Pyramid),主要思路是将输入图片做成多个尺度,不同尺度的图像生成不同尺度的特征,这种方法简单而有效,大量使用在了COCO等竞赛上,但缺点是非常耗时,计算量也很大。 从前面几大主干网络的内容可以知道,卷积神经网络不同层的大小与语义信息不同,本身就类似一个金字塔结构。
如上图,金字塔底部可以较为浅层特征图,金字塔顶部可以较为深层特征图!
浅层的特征图感受野小,比较适合检测小目标(要检测大目标,则其只“看”到了大目标的一部分,有效信息不够);深层的特征图感受野大,适合检测大目标(要检测小目标,则其”看“到了太多的背景噪音,冗余噪音太多),因此FPN应运而生!!!
2017年的FPN(Feature Pyramid Network)方法融合了不同层的特征,较好地改善了多尺度检测问题。
提出时间及作者:
FPN由何凯明等人在2017年提出,这一网络结构的提出为解决物体检测中的多尺度问题提供了新的思路。
三、主要贡献
FPN的主要贡献在于:
- 提出了一种新的特征金字塔结构:FPN通过构建自底向上和自顶向下的特征融合路径,将不同尺度的特征图进行融合,从而生成具有丰富多尺度信息的特征金字塔。
- 显著提升了小物体检测的性能:在不显著增加计算量的情况下,FPN通过特征融合的方式,大幅度提高了模型对小尺度物体的检测能力。
- 广泛应用于多种计算机视觉任务:FPN不仅适用于目标检测任务,还被广泛应用于语义分割、实例分割等任务中,并取得了显著的效果。
四、优缺点
优点:
- 多尺度特征融合:FPN通过融合不同尺度的特征图,使得模型能够同时处理不同大小的目标。
- 计算效率高:在基本不增加计算量的情况下,FPN显著提升了模型的检测性能。
- 灵活性强:FPN可以轻松地与其他网络结构相结合使用,提高整体性能。
缺点(相对而言):
- 对硬件资源有一定要求:虽然FPN的计算量没有显著增加,但处理多尺度特征图仍然需要一定的硬件资源支持。