| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 6030 | Accepted: 1807 |
Description
Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always pays for his goods in such a way that the smallest number of coins changes hands, i.e., the number of coins he uses to pay plus the number of coins he receives in change is minimized. Help him to determine what this minimum number is.
FJ wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1, V2, ..., VN (1 ≤ Vi ≤ 120). Farmer John is carrying C1 coins of value V1, C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner (although Farmer John must be sure to pay in a way that makes it possible to make the correct change).
Input
Line 2: N space-separated integers, respectively V 1, V 2, ..., VN coins ( V 1, ... VN)
Line 3: N space-separated integers, respectively C 1, C 2, ..., CN
Output
Sample Input
3 70 5 25 50 5 2 1
Sample Output
3
Hint
Source
多重背包求解得到数T(此T非题目给的T因为可以找零所以可以大于它)的最小代价 完全背包求解找零后的最小代价 前面T开小了直接wa 一怒之下直接标到200000
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
const int inf=(1<<30);
int a[200];
int num[200];
int dp[210015];
int n,t;
void ZeroOnePack(int w,int v)
{
for(int i=200000;i>=w;i--)
if(dp[i-w]+v<dp[i])
dp[i]=dp[i-w]+v;
}
void CompletePack(int w,int v)
{
for(int i=w;i<=200000;i++)
if(dp[i-w]+v<dp[i])
dp[i]=dp[i-w]+v;
}
void MultiplePack()
{
for(int i=1;i<=n;i++)
{
if(a[i]*num[i]>200000)
CompletePack(a[i],1);
else
{
int k=1;
while(k<num[i])
{
ZeroOnePack(a[i]*k,k);
num[i]-=k;
k*=2;
}
ZeroOnePack(a[i]*num[i],num[i]);
}
}
}
int main()
{
while(~scanf("%d%d",&n,&t))
{
for(int i=1;i<=210005;i++)
dp[i]=inf;
dp[0]=0;
for(int i=1;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<=n;i++)
scanf("%d",num+i);
MultiplePack(); //可以凑到的数
for(int i=1;i<=n;i++) //完全背包找零
for(int k=200000;k>=1;k--)
if(dp[k+a[i]]+1<dp[k])
dp[k]=dp[k+a[i]]+1;
if(dp[t]==inf)
puts("-1");
else
printf("%d\n",dp[t]);
}
return 0;
}

本博客探讨了农民约翰在购买农场用品时如何通过最小化硬币交易数量实现最优支付策略,包括如何计算所需的最少硬币总数,并提供了解决方案及实例分析。
533

被折叠的 条评论
为什么被折叠?



