Coins
| Time Limit: 3000MS | Memory Limit: 30000K | |
| Total Submissions: 33224 | Accepted: 11279 |
Description
People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar.One day Tony opened his money-box and found there were some coins.He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch.
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.
Input
The input contains several test cases. The first line of each test case contains two integers n(1<=n<=100),m(m<=100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1<=Ai<=100000,1<=Ci<=1000). The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
3 10 1 2 4 2 1 1 2 5 1 4 2 1 0 0
Sample Output
8 4
Source
裸的多重背包 不能用自带的max函数 时间耗费太大了 会超时
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
int a[200];
int num[200];
int dp[100005];
int n,m;
void ZeroOnePack(int w,int v)
{
for(int i=m;i>=w;i--)
if(dp[i-w]+v>dp[i])
dp[i]=dp[i-w]+v;
}
void CompletePack(int w,int v)
{
for(int i=w;i<=m;i++)
if(dp[i-w]+v>dp[i])
dp[i]=dp[i-w]+v;
}
void MultiplePack()
{
for(int i=1;i<=n;i++)
{
if(a[i]*num[i]>=m)
CompletePack(a[i],a[i]);
else
{
int k=1;
while(k<num[i])
{
ZeroOnePack(a[i]*k,a[i]*k);
num[i]-=k;
k*=2;
}
ZeroOnePack(a[i]*num[i],a[i]*num[i]);
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m)&&(n+m))
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<=n;i++)
scanf("%d",num+i);
MultiplePack();
int res=0;
for(int i=1;i<=m;i++)
if(dp[i]==i)
res++;
printf("%d\n",res);
}
return 0;
}

本文介绍了一种解决多重背包问题的高效算法,并提供了一个具体的C++实现案例。该算法通过优化选择硬币支付方式,计算在给定条件下可以支付的不同价格数目。
1616

被折叠的 条评论
为什么被折叠?



