You are given a multiset S consisting of positive integers (initially empty). There are two kind of queries:
- Add a positive integer to S, the newly added integer is not less than any number in it.
- Find a subset s of the set S such that the value
is maximum possible. Here max(s) means maximum value of elements in s,
— the average value of numbers in s. Output this maximum possible value of
.
The first line contains a single integer Q (1 ≤ Q ≤ 5·105) — the number of queries.
Each of the next Q lines contains a description of query. For queries of type 1 two integers 1 and x are given, where x (1 ≤ x ≤ 109) is a number that you should add to S. It's guaranteed that x is not less than any number in S. For queries of type 2, a single integer 2 is given.
It's guaranteed that the first query has type 1, i. e. S is not empty when a query of type 2 comes.
Output the answer for each query of the second type in the order these queries are given in input. Each number should be printed in separate line.
Your answer is considered correct, if each of your answers has absolute or relative error not greater than 10 - 6.
Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if .
6 1 3 2 1 4 2 1 8 2
0.0000000000 0.5000000000 3.0000000000
4 1 1 1 4 1 5 2
2.0000000000
题意:一共进行q次操作,有两种操作,操作一:在集合S中添加元素x,保证x不小于S中任何一个元素(保证S递增);操作二:查询,s为S子集,求函数max(s)-mean(s)的最大值,max(s)表示s中元素的最大值,mean(s)表示s中所有元素的平均数。
解题思路:由于S递增,要使max(s)-mean(s)最大,只需要取S中的最后一个元素和S中前m(m<=n-1)个元素即可,而且由1到m函数max(s)-mean(s)的值先增加后减小,可以使用三分来求最值
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
LL a[500005], sum[500005];
int cnt, n, x;
double get(int x)
{
return 1.0 * a[cnt] - 1.0 * (sum[x] + a[cnt]) / (x + 1);
}
int main()
{
while (~scanf("%d", &n))
{
sum[0] = cnt = 0;
for (int i = 1; i <= n; i++)
{
scanf("%d", &x);
if (x == 1)
{
cnt++;
scanf("%d", &a[cnt]);
sum[cnt] = sum[cnt - 1] + a[cnt];
}
else
{
int l = 1, r = cnt - 1;
while (r - l > 2)
{
int lmid = l + (r - l) / 3;
int rmid = r - (r - l) / 3;
if (get(lmid) > get(rmid)) r = rmid;
else if (get(lmid) < get(rmid)) l = lmid;
else
{
l = lmid;
r = rmid;
}
}
double ans = 0;
for (int j = l; j <= r; j++) ans = max(ans, get(j));
printf("%.8lf\n", ans);
}
}
}
return 0;
}